Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2013 (2013), Article ID 347312, 10 pages
http://dx.doi.org/10.1155/2013/347312
Research Article

Differential Effects of Methyl-4-Phenylpyridinium Ion, Rotenone, and Paraquat on Differentiated SH-SY5Y Cells

1REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
2Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal

Received 15 November 2012; Revised 28 January 2013; Accepted 28 January 2013

Academic Editor: Lucio Guido Costa

Copyright © 2013 João Barbosa Martins et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Paraquat (PQ), a cationic nonselective bipyridyl herbicide, has been used as neurotoxicant to modulate Parkinson’s disease in laboratory settings. Other compounds like rotenone (ROT), a pesticide, and 1-methyl-4-phenylpyridinium ion (MPP+) have been widely used as neurotoxicants. We compared the toxicity of these three neurotoxicants using differentiated dopaminergic SH-SY5Y human cells, aiming to elucidate their differential effects. PQ-induced neurotoxicity was shown to be concentration and time dependent, being mitochondrial dysfunction followed by neuronal death. On the other hand, cells exposure to MPP+ induced mitochondrial dysfunction, but not cellular lyses. Meanwhile, ROT promoted both mitochondrial dysfunction and neuronal death, revealing a biphasic pattern. To further elucidate PQ neurotoxic mechanism, several protective agents were used. SH-SY5Y cells pretreatment with tiron (TIR) and 2-hydroxybenzoic acid sodium salt (NaSAL), both antioxidants, and Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), a nitric oxide synthase inhibitor, partially protected against PQ-induced cell injury. Additionally, 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenyl-propyl)piperazine (GBR 12909), a dopamine transporter inhibitor, and cycloheximide (CHX), a protein synthesis inhibitor, also partially protected against PQ-induced cell injury. In conclusion, we demonstrated that PQ, MPP+, and ROT exerted differential toxic effects on dopaminergic cells. PQ neurotoxicity occurred through exacerbated oxidative stress, with involvement of uptake through the dopamine transporter and protein synthesis.