Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2014, Article ID 491316, 27 pages
http://dx.doi.org/10.1155/2014/491316
Review Article

Aluminum-Induced Entropy in Biological Systems: Implications for Neurological Disease

1Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, 828 W. 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L8
2Program Experimental Medicine, University of British Columbia, Vancouver, Canada V5Z 1L8
3Program in Neurosciences, University of British Columbia, Vancouver, Canada V5Z 1L8
4MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139, USA
5Hudson, FL 34667, USA
6Department of Communicative Disorders, University of Louisiana, Lafayette, LA 70504-3170, USA
7Internal Medicine Group Practice, PhyNet Inc., 4002 Technology Center, Longview, TX 75605, USA

Received 9 June 2014; Accepted 28 July 2014; Published 2 October 2014

Academic Editor: William Valentine

Copyright © 2014 Christopher A. Shaw et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Exley, “The coordination chemistry of aluminium in neurodegenerative disease,” Coordination Chemistry Reviews, vol. 256, no. 19-20, pp. 2142–2146, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. C. A. Shaw, Y. Li, and L. Tomljenovic, “Administration of aluminium to neonatal mice in vaccine-relevant amounts is associated with adverse long term neurological outcomes,” Journal of Inorganic Biochemistry, vol. 128, pp. 237–244, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Exley, “Darwin, natural selection and the biological essentiality of aluminium and silicon,” Trends in Biochemical Sciences, vol. 34, no. 12, pp. 589–593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Power, J. S. C. Loh, and C. Vernon, “Organic compounds in the processing of lateritic bauxites to alumina part 2: effects of organics in the Bayer process,” Hydrometallurgy, vol. 127-128, pp. 125–149, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. R. A. Yokel, “Aluminium toxicokinetics: an updated minireview,” Pharmacology and Toxicology, vol. 88, no. 4, pp. 159–167, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. W. J. Gies, “Some objections to the use of alum baking-powder,” The Journal of the American Medical Association, vol. 57, no. 10, pp. 816–821, 1911. View at Publisher · View at Google Scholar
  7. J. F. Struve, “Taking Aluminum out of the Diet,” http://home.earthlink.net/∼joannefstruve/_wsn/page2.html.
  8. “Avoid aluminum—Locate the unexpected sources of aluminum in products,” http://www.naturalnews.com/033431_aluminum_personal_care_products.html.
  9. L. Tomljenovic and C. A. Shaw, “Aluminum vaccine adjuvants: are they safe?” Current Medicinal Chemistry, vol. 18, no. 17, pp. 2630–2637, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. R. W. Dapson, “The history, chemistry and modes of action of carmine and related dyes,” Biotechnic & Histochemistry, vol. 82, no. 4-5, pp. 173–187, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. P. D. Darbre, “Underarm cosmetics are a cause of breast cancer,” European Journal of Cancer Prevention, vol. 10, no. 5, pp. 389–393, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. P. D. Darbre, “Aluminium, antiperspirants and breast cancer,” Journal of Inorganic Biochemistry, vol. 99, no. 9, pp. 1912–1919, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. P. D. Darbre, D. Pugazhendhi, and F. Mannello, “Aluminium and human breast diseases,” Journal of Inorganic Biochemistry, vol. 105, no. 11, pp. 1484–1488, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A.-P. Sappino, R. Buser, L. Lesne et al., “Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells,” Journal of Applied Toxicology, vol. 32, no. 3, pp. 233–243, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. “Science News Aluminum Found in Sunscreen: Could It Cause Skin Cancer?” http://www.sciencedaily.com/releases/2007/08/070812084458.htm.
  16. S. Nicholson and C. Exley, “Aluminum: a potential pro-oxidant in sunscreens/sunblocks?” Free Radical Biology and Medicine, vol. 43, no. 8, pp. 1216–1217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. W. Oller, “Biosemiotic entropy: concluding the series,” Entropy, vol. 16, pp. 4060–4087, 2014. View at Publisher · View at Google Scholar
  18. R. J. Mitkus, D. B. King, M. A. Hess, R. A. Forshee, and M. O. Walderhaug, “Updated aluminum pharmacokinetics following infant exposures through diet and vaccination,” Vaccine, vol. 29, no. 51, pp. 9538–9543, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. P. A. Offit and R. K. Jew, “Addressing parents’ concerns: do vaccines contain harmful preservatives, adjuvants, additives, or residuals?” Pediatrics, vol. 112, no. 6, pp. 1394–1397, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J. R. J. Sorenson, I. R. Campbell, L. B. Tepper, and R. D. Lingg, “Aluminum in the environment and human health,” Environmental Health Perspectives, vol. 8, pp. 3–95, 1974. View at Publisher · View at Google Scholar · View at Scopus
  21. T. P. Flaten, “Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water,” Brain Research Bulletin, vol. 55, no. 2, pp. 187–196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Krewski, R. A. Yokel, E. Nieboer et al., “Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide,” Journal of Toxicology and Environmental Health B: Critical Reviews, vol. 10, no. 1, pp. 1–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Z.-L. Xie, D.-M. Dong, G.-Z. Bao, S.-T. Wang, Y.-G. Du, and L.-M. Qiu, “Aluminum content of tea leaves and factors affecting the uptake of aluminum from soil into tea leaves,” Chinese Geographical Science, vol. 11, no. 1, pp. 87–91, 2001. View at Google Scholar · View at Scopus
  24. T. P. Flaten and M. Ødegård, “Tea, aluminium and Alzheimer's disease,” Food and Chemical Toxicology, vol. 26, no. 11-12, pp. 959–960, 1988. View at Publisher · View at Google Scholar · View at Scopus
  25. A.-K. Flaten and W. Lund, “Speciation of aluminium in tea infusions studied by size exclusion chromatography with detection by post-column reaction,” Science of the Total Environment, vol. 207, no. 1, pp. 21–28, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. R. A. Yokel and R. L. Florence, “Aluminum bioavailability from tea infusion,” Food and Chemical Toxicology, vol. 46, no. 12, pp. 3659–3663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. R. Walton, “Chronic aluminum intake causes Alzheimer's disease: applying Sir Austin Bradford Hill's causality criteria,” Journal of Alzheimer's Disease, vol. 40, pp. 765–838, 2014. View at Google Scholar
  28. L. Tomljenovic, “Aluminum and Alzheimer's disease: after a century of controversy, is there a plausible link?” Journal of Alzheimer's Disease, vol. 23, no. 4, pp. 567–598, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. W. J. Lukiw, S. Bjattacharjee, Y. Zhao, A. I. Pogue, and M. E. Percy, “Generation of reactive oxygen species (ROS) and pro-inflammatory signaling in human brain cells in primary culture,” Journal of Alzheimer's Disease & Parkinsonism, supplement 2, article 001, 2012. View at Google Scholar
  30. W. J. Lukiw, M. E. Percy, and T. P. Kruck, “Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture,” Journal of Inorganic Biochemistry, vol. 99, no. 9, pp. 1895–1898, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. N. J. Bishop, R. Morley, B. Chir, J. Philip Day, and A. Lucas, “Aluminum neurotoxicity in preterm infants receiving intravenous-feeding solutions,” The New England Journal of Medicine, vol. 336, no. 22, pp. 1557–1561, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. J. A. Flendrig, H. Kruis, and H. A. Das, “Aluminium intoxication: the cause of dialysis dementia?” Proceedings of the European Dialysis and Transplant Association, vol. 13, pp. 355–368, 1976. View at Google Scholar
  33. E. K. Pivnick, N. C. Kerr, R. A. Kaufman, D. P. Jones, and R. W. Chesney, “Rickets secondary to phosphate depletion: a sequela of antacid use in infancy,” Clinical Pediatrics, vol. 34, no. 2, pp. 73–78, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. N. C. Bowdler, D. S. Beasley, E. C. Fritze et al., “Behavioral effects of aluminum ingestion on animal and human subjects,” Pharmacology, Biochemistry and Behavior, vol. 10, no. 4, pp. 505–512, 1979. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Exley and M. M. Esiri, “Severe cerebral congophilic angiopathy coincident with increased brain aluminium in a resident of Camelford, Cornwall, UK,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 77, no. 7, pp. 877–879, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. J. R. Walton and M.-X. Wang, “APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer's disease,” Journal of Inorganic Biochemistry, vol. 103, no. 11, pp. 1548–1554, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. S. Golub, M. E. Gershwin, J. M. Donald, S. Negri, and C. L. Keen, “Maternal and developmental toxicity of chronic aluminum exposure in mice,” Toxicological Sciences, vol. 8, no. 3, pp. 346–357, 1987. View at Publisher · View at Google Scholar · View at Scopus
  38. R. K. Gherardi, M. Coquet, P. Chérin et al., “Macrophagic myofasciitis: an emerging entity,” The Lancet, vol. 352, no. 9125, pp. 347–352, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. R. K. Gherardi and F. J. Authier, “Macrophagic myofasciitis: characterization and pathophysiology,” Lupus, vol. 21, no. 2, pp. 184–189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Passeri, C. Villa, M. Couette et al., “Long-term follow-up of cognitive dysfunction in patients with aluminum hydroxide-induced macrophagic myofasciitis (MMF),” Journal of Inorganic Biochemistry, vol. 105, no. 11, pp. 1457–1463, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Couette, M. F. Boisse, P. Maison et al., “Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction,” Journal of Inorganic Biochemistry, vol. 103, no. 11, pp. 1571–1578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. M. Ryan, N. Bermingham, H. J. Harrington, and C. Keohane, “Atypical presentation of macrophagic myofasciitis 10 years post vaccination,” Neuromuscular Disorders, vol. 16, no. 12, pp. 867–869, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Luján, M. Pérez, E. Salazar et al., “Autoimmune/autoinflammatory syndrome induced by adjuvants (ASIA syndrome) in commercial sheep,” Immunologic Research, vol. 56, no. 2-3, pp. 317–324, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. M. S. Petrik, M. C. Wong, R. C. Tabata, R. F. Garry, and C. A. Shaw, “Aluminum adjuvant linked to Gulf War illness induces motor neuron death in mice,” NeuroMolecular Medicine, vol. 9, no. 1, pp. 83–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. C. A. Shaw and M. S. Petrik, “Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration,” Journal of Inorganic Biochemistry, vol. 103, no. 11, pp. 1555–1562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Sińczuk-Walczak, M. Szymczak, G. Raźniewska, W. Matczak, and W. Szymczak, “Effects of occupational exposure to aluminum on nervous system: clinical and electroencephalographic findings,” International Journal of Occupational Medicine and Environmental Health, vol. 16, no. 4, pp. 301–310, 2003. View at Google Scholar · View at Scopus
  47. CRC, CRC Handbook of Chemistry and Physics 2012-2013, CRC Press, New York, NY, USA, 2012.
  48. C. Exley, “Human exposure to aluminium,” Environmental Science: Processes & Impacts, vol. 15, pp. 1807–1816, 2013. View at Google Scholar
  49. C. Sonnenschein and A. M. Soto, The Society of Cells, Bios Scientific, Oxford, UK, 1999.
  50. F. Crick, “Central dogma of molecular biology,” Nature, vol. 227, no. 5258, pp. 561–563, 1970. View at Publisher · View at Google Scholar · View at Scopus
  51. J. W. Oller Jr., “The antithesis of entropy: biosemiotic communication from genetics to human language with special emphasis on the immune systems,” Entropy, vol. 12, no. 4, pp. 631–705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M.-W. Ho, “The new genetics and natural versus artificial genetic modification,” Entropy, vol. 15, no. 11, pp. 4748–4781, 2013. View at Publisher · View at Google Scholar
  53. D. Grant, W. F. Long, and F. B. Williamson, “Heparin-polypeptide interaction. Near-i.r. spectroscopy in an anhydrous dispersant allows the involvement of polymer-associated water to be assessed,” Biochemical Journal, vol. 277, no. 2, pp. 569–571, 1991. View at Google Scholar · View at Scopus
  54. International Human Genome Sequencing Consortium, “Initial sequencing and analysis of the human genome,” Nature, vol. 431, pp. 931–945, 2004. View at Publisher · View at Google Scholar
  55. D. Bohrer, P. C. Do Nascimento, J. K. A. Mendonça, V. G. Polli, and L. M. de Carvalho, “Interaction of aluminium ions with some amino acids present in human blood,” Amino Acids, vol. 27, no. 1, pp. 75–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. P. J. Brothers and C. E. Ruggerio, “Coordination and solution chemistry of the metals: biological, medical, and environmental relevance,” in The Group 13 Metals Aluminium , Gallium, Indium and Thallium, Chemical Patterns and Peculiarities, S. Aldridge and A. J. Downs, Eds., p. 584, John Wiley & Sons, Chichester, UK, 2011. View at Google Scholar
  57. S. Seneff, R. M. Davidson, and J. Liu, “Empirical data confirm autism symptoms related to aluminum and acetaminophen exposure,” Entropy, vol. 14, no. 11, pp. 2227–2253, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. J. M. Mercero, J. E. Fowler, and J. M. Ugalde, “Aluminum(III) interactions with the acidic amino acid chains,” Journal of Physical Chemistry A, vol. 102, no. 35, pp. 7006–7012, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. R. M. Davidson and S. Seneff, “The initial common pathway of inflammation, disease, and sudden death,” Entropy, vol. 14, no. 8, pp. 1399–1442, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. V. Gatta, D. Drago, K. Fincati et al., “Microarray analysis on human neuroblastoma cells exposed to aluminum, β1-42-amyloid or the β1-42-amyloid aluminum complex,” PLoS One, vol. 6, no. 1, Article ID e15965, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. J. H. Duffus, “‘Heavy metals’ a meaningless term?” Pure and Applied Chemistry, vol. 74, no. 5, pp. 793–807, 2002. View at Google Scholar · View at Scopus
  62. J. C. K. Lai and J. P. Blass, “Inhibition of brain glycolysis by aluminum,” Journal of Neurochemistry, vol. 42, no. 2, pp. 438–446, 1984. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Tomljenovic and C. A. Shaw, “Do aluminum vaccine adjuvants contribute to the rising prevalence of autism?” Journal of Inorganic Biochemistry, vol. 105, no. 11, pp. 1489–1499, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Lemire and V. D. Appanna, “Aluminum toxicity and astrocyte dysfunction: a metabolic link to neurological disorders,” Journal of Inorganic Biochemistry, vol. 105, no. 11, pp. 1513–1517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Shoenfeld and N. Agmon-Levin, ““ASIA”—autoimmune/inflammatory syndrome induced by adjuvants,” Journal of Autoimmunity, vol. 36, no. 1, pp. 4–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Israeli, N. Agmon-Levin, M. Blank, and Y. Shoenfeld, “Adjuvants and autoimmunity,” Lupus, vol. 18, no. 13, pp. 1217–1225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Agmon-Levin, G. Hughes, and Y. Shoenfeld, “The spectrum of ASIA: ‘Autoimmune (Auto-inflammatory) Syndrome induced by Adjuvants’,” Lupus, vol. 21, no. 2, pp. 118–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. C. A. Shaw, S. D. Kette, R. M. Davidson, and S. Seneff, “Aluminum's role in CNS-immune system interactions leading to neurological disorders,” Immunome Research, vol. 9, article 1, 2013. View at Google Scholar
  69. R. A. Yokel, C. L. Hicks, and R. L. Florence, “Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese,” Food and Chemical Toxicology, vol. 46, no. 6, pp. 2261–2266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. Agency for Toxic Substances; Disease Registry (ATSDR), Toxicological Profile for Aluminum, Agency for Toxic Substances, Disease Registry (ATSDR), Atlanta, Ga, USA, 2013, http://www.atsdr.cdc.gov/toxprofiles/tp22.pdf.
  71. S. M. Saiyed and R. A. Yokel, “Aluminium content of some foods and food products in the USA, with aluminium food additives,” Food Additives & Contaminants, vol. 22, no. 3, pp. 234–244, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. J. A. T. Pennington and S. A. Schoen, “Estimates of dietary exposure to aluminium,” Food Additives and Contaminants, vol. 12, no. 1, pp. 119–128, 1995. View at Publisher · View at Google Scholar · View at Scopus
  73. J. L. Greger, “Aluminum metabolism,” Annual Review of Nutrition, vol. 13, pp. 43–63, 1993. View at Publisher · View at Google Scholar · View at Scopus
  74. FAO/WHO, “Summary and conclusions,” in Proceedings of the 67th Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA '06), Rome, Italy, June 2006. View at Publisher · View at Google Scholar
  75. P. O. Ganrot, “Metabolism and possible health effects of aluminum,” Environmental Health Perspectives, vol. 65, pp. 363–441, 1986. View at Google Scholar · View at Scopus
  76. D. R. Crapper, S. S. Krishnan, and A. J. Dalton, “Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration,” Science, vol. 180, no. 4085, pp. 511–513, 1973. View at Publisher · View at Google Scholar · View at Scopus
  77. D. R. Crapper and A. J. Dalton, “Alterations in short term retention, conditioned avoidance response acquisition and motivation following aluminum induced neurofibrillary degeneration,” Physiology and Behavior, vol. 10, no. 5, pp. 925–933, 1973. View at Publisher · View at Google Scholar · View at Scopus
  78. W. J. Lukiw, B. Krishnan, L. Wong, T. P. A. Kruck, C. Bergeron, and D. R. Crapper McLachlan, “Nuclear compartmentalization of aluminum in Alzheimer's disease (AD),” Neurobiology of Aging, vol. 13, no. 1, pp. 115–121, 1992. View at Publisher · View at Google Scholar · View at Scopus
  79. N. W. Baylor, W. Egan, and P. Richman, “Aluminum salts in vaccines—US perspective,” Vaccine, vol. 20, supplement 3, pp. S18–S23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. J. M. Brewer, “(How) do aluminium adjuvants work?” Immunology Letters, vol. 102, no. 1, pp. 10–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. T. C. Eickhoff and M. Myers, “Workshop summary: aluminum in vaccines,” Vaccine, vol. 20, supplement 3, pp. S1–S4, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. B. L. Carson, Aluminum Compounds. Review of Toxicological Literature, Abridged Final Report: 84 pages. Integrated Laboratory Systems, Research Triangle Park, North Carolina, 2000, http://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/aluminum_508.pdf#search=aluminum compounds.
  83. M. R. Wills and J. Savory, “Water content of aluminum, dialysis dementia, and osteomalacia,” Environmental Health Perspectives, vol. 63, pp. 141–147, 1985. View at Publisher · View at Google Scholar · View at Scopus
  84. G. L. Wenk and K. L. Stemmer, “The influence of ingested aluminum upon norepinephrine and dopamine levels in the rat brain,” NeuroToxicology, vol. 2, no. 2, pp. 347–353, 1981. View at Google Scholar · View at Scopus
  85. T. Moos and E. H. Morgan, “Transferrin and transferrin receptor function in brain barrier systems,” Cellular and Molecular Neurobiology, vol. 20, no. 1, pp. 77–95, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. R. E. Flarend, S. L. Hem, J. L. White et al., “In vivo absorption of aluminium-containing vaccine adjuvants using 26Al,” Vaccine, vol. 15, no. 12-13, pp. 1314–1318, 1997. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Autret-Leca, L. Bensouda-Grimaldi, A. P. Jonville-Béra, and F. Beau-Salinas, “Pharmacovigilance of vaccines,” Archives de Pediatrie, vol. 13, no. 2, pp. 175–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Flarend, T. Bin, D. Elmore, and S. L. Hem, “A preliminary study of the dermal absorption of aluminium from antiperspirants using aluminium-26,” Food and Chemical Toxicology, vol. 39, no. 2, pp. 163–168, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Dayah, “Dynamic Periodic Table,” October 1997, http://www.ptable.com.
  90. C. A. Shaw and L. Tomljenovic, “Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity,” Immunologic Research, vol. 56, no. 2-3, pp. 304–316, 2013. View at Publisher · View at Google Scholar · View at Scopus
  91. R. A. Yokel and P. J. McNamara, “Aluminium toxicokinetics: an updated minireview,” Pharmacology and Toxicology, vol. 88, no. 4, pp. 159–167, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallographica A, vol. 32, pp. 751–767, 1976. View at Publisher · View at Google Scholar
  93. Y. Marcus, “Viscosity B-coefficients, structural entropies and heat capacities, and the effects of ions on the structure of water,” Journal of Solution Chemistry, vol. 23, no. 7, pp. 831–848, 1994. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Marcus, “Individual ionic surface tension increments in aqueous solutions,” Langmuir, vol. 29, no. 9, pp. 2881–2888, 2013. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Exley, “Aluminium-based adjuvants should not be used as placebos in clinical trials,” Vaccine, vol. 29, no. 50, 9289 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. I. Zivkovic, V. Petrusic, M. Stojanovic, A. Inic -Kanada, I. Stojicevic, and L. Dimitrijevic, “Induction of decreased fecundity by tetanus toxoid hyper-immunization in C57BL/6 mice depends on the applied adjuvant,” Innate Immunity, vol. 18, no. 2, pp. 333–342, 2012. View at Publisher · View at Google Scholar · View at Scopus
  97. X.-B. Li, H. Zheng, Z.-R. Zhang et al., “Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains,” Nanomedicine: Nanotechnology, Biology and Medicine, vol. 5, no. 4, pp. 473–479, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Couette, M.-F. Boisse, P. Maison et al., “Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction,” Journal of Inorganic Biochemistry, vol. 103, no. 11, pp. 1571–1578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. R. K. Gherardi, M. Coquet, P. Cherin et al., “Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle,” Brain, vol. 124, no. 9, pp. 1821–1831, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. R. K. Gherardi and F.-J. Authier, “Aluminum inclusion macrophagic myofasciitis: a recently identified condition,” Immunology and Allergy Clinics of North America, vol. 23, no. 4, pp. 699–712, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. Shoenfeld and N. Agmon-Levin, “'ASIA' - Autoimmune/inflammatory syndrome induced by adjuvants,” Journal of Autoimmunity, vol. 36, no. 1, pp. 4–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. P. L. Meroni, “Autoimmune or auto-inflammatory syndrome induced by adjuvants (ASIA): old truths and a new syndrome?” Journal of Autoimmunity, vol. 36, no. 1, pp. 1–3, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. Zafrir, N. Agmon-Levin, Z. Paz, T. Shilton, and Y. Shoenfeld, “Autoimmunity following Hepatitis B vaccine as part of the spectrum of “Autoimmune (Auto-inflammatory) Syndrome induced by Adjuvants” (ASIA): analysis of 93 cases,” Lupus, vol. 21, no. 2, pp. 146–152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. G. S. Goldman and N. Z. Miller, “Relative trends in hospitalizations and mortality among infants by the number of vaccine doses and age, based on the Vaccine Adverse Event Reporting System (VAERS), 1990–2010,” Human and Experimental Toxicology, vol. 31, no. 10, pp. 1012–1021, 2012. View at Publisher · View at Google Scholar · View at Scopus
  105. N. Z. Miller and G. S. Goldman, “Infant mortality rates regressed against number of vaccine doses routinely given: is there a biochemical or synergistic toxicity?” Human & Experimental Toxicology, vol. 30, no. 9, pp. 1420–1428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. Z. Khan, C. Combadière, F.-J. Authier et al., “Slow CCL2-dependent translocation of biopersistent particles from muscle to brain,” BMC Medicine, vol. 11, article 99, 2013. View at Publisher · View at Google Scholar · View at Scopus
  107. E. Nieboer, B. L. Gibson, A. D. Oxman, and J. R. Kramer, “Health effects of aluminum: a critical review with emphasis on aluminum in drinking water,” Environmental Reviews, vol. 3, no. 1, pp. 29–81, 1995. View at Publisher · View at Google Scholar · View at Scopus
  108. B. E. Gryder, C. W. Nelson, and S. Shepard, “Biosemiotic entropy of the genome: mutations and epigenetic imbalances resulting in cancer,” Entropy, vol. 15, no. 1, pp. 234–261, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  109. T. M. Maynard, L. Sikich, J. A. Lieberman, and A.-S. LaMantia, “Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia,” Schizophrenia Bulletin, vol. 27, no. 3, pp. 457–476, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. K. D. Collins and M. W. Washabaugh, “The Hofmeister effect and the behaviour of water at interfaces.,” Quarterly Reviews of Biophysics, vol. 18, no. 4, pp. 323–422, 1985. View at Publisher · View at Google Scholar · View at Scopus
  111. Y. Marcus, Ions in Water and Biophysical Implications: From Chaos to Cosmos, Springer, Dordrecht, The Netherlands, 2012.
  112. J. Barthel and G. A. Krestov, Thermodynamics of Solvation: Solution and Dissolution, Ions and Solvents, Structure and Energetics, Ellis Horwood Series in Physical Chemistry, Ellis Horwood, New York, NY, USA, 1991.
  113. K. D. Collins, “Charge density-dependent strength of hydration and biological structure,” Biophysical Journal, vol. 72, no. 1, pp. 65–76, 1997. View at Publisher · View at Google Scholar · View at Scopus
  114. G. H. Pollack, The Fourth Phase of Water: Beyond Solid, Liquid, and Vapor, Ebner & Sons, Seattle, Wash, USA, 2013.
  115. G. N. Ling, “A new theoretical foundation for the polarized-oriented multilayer theory of cell water and for inanimate systems demonstrating long-range dynamic structuring of water molecules,” Physiological Chemistry and Physics and Medical NMR, vol. 35, no. 2, pp. 91–130, 2003. View at Google Scholar · View at Scopus
  116. G. N. Ling, “An updated and further developed theory and evidence for the close-contact, one-on-one association of nearly all cell K+ with β- and γ-carboxyl groups of intracellular proteins,” Physiological Chemistry and Physics and Medical NMR, vol. 37, no. 1, pp. 1–63, 2005. View at Google Scholar · View at Scopus
  117. S. Seneff, R. Davidson, and L. Mascitelli, “Might cholesterol sulfate deficiency contribute to the development of autistic spectrum disorder?” Medical Hypotheses, vol. 78, no. 2, pp. 213–217, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. S. Seneff, A. Lauritzen, R. Davidson, and L. Lentz-Marino, “Is endothelial nitric oxide synthase a moonlighting protein whose day job is cholesterol sulfate synthesis? Implications for cholesterol transport, diabetes and cardiovascular disease,” Entropy, vol. 14, no. 12, pp. 2492–2530, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. R. M. Davidson, A. Lauritzen, and S. Seneff, “Biological water dynamics and entropy: a biophysical origin of cancer and other diseases,” Entropy, vol. 15, no. 9, pp. 3822–3876, 2013. View at Google Scholar
  120. H. Sigel and A. Sigel, Eds., Metal Ions in Biological Systems, vol. 24 of Aluminum and Its Role in Biology, Marcel Dekker, New York, NY, USA, 1988.
  121. D. W. Piper and B. Fenton, “The adsorption of pepsin,” Digestive Diseases and Sciences, vol. 6, no. 2, pp. 134–141, 1961. View at Google Scholar
  122. R. J. Sepelyak, J. R. Feldkamp, T. E. Moody, J. L. White, and S. L. Hem, “Adsorption of pepsin by aluminum hydroxide I: adsorption mechanism,” Journal of Pharmaceutical Sciences, vol. 73, no. 11, pp. 1514–1517, 1984. View at Publisher · View at Google Scholar · View at Scopus
  123. “Metal ions in aqueous solution,” 2013, http://en.wikipedia.org/wiki/Metal_ions_in_aqueous_solution.
  124. S. O. Duke, K. C. Vaughn, and R. D. Wauchope, “Effects of glyphosate on uptake, translocation, and intracellular localization of metal cations in soybean (Glycine max) seedlings,” Pesticide Biochemistry and Physiology, vol. 24, no. 3, pp. 384–394, 1985. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Purgel, Z. Takács, C. M. Jonsson et al., “Glyphosate complexation to aluminium(III). An equilibrium and structural study in solution using potentiometry, multinuclear NMR, ATR-FTIR, ESI-MS and DFT calculations,” Journal of Inorganic Biochemistry, vol. 103, no. 11, pp. 1426–1438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. A. Samsel and S. Seneff, “Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases,” Entropy, vol. 15, pp. 1416–1463, 2013. View at Publisher · View at Google Scholar
  127. J. A. Carman, H. R. Vlieger, L. J. Ver Steeg et al., “A long-term toxicology study on pigs fed a combined genetically modified (GM) soy and GM maize diet,” Journal of Organic Systems, vol. 8, no. 1, pp. 38–54, 2013. View at Google Scholar
  128. D. D. Ulmer, “Toxicity from aluminium antacids,” The New England Journal of Medicine, vol. 294, no. 4, pp. 218–219, 1976. View at Publisher · View at Google Scholar · View at Scopus
  129. J. W. Coburn, M. G. Mischel, W. G. Goodman, and I. B. Salusky, “Calcium citrate markedly enhances aluminum absorption from aluminum hydroxide,” The American Journal of Kidney Diseases, vol. 17, no. 6, pp. 708–711, 1991. View at Publisher · View at Google Scholar · View at Scopus
  130. B. B. Kirschbaum and A. C. Schoolwerth, “Acute aluminum toxicity associated with oral citrate and aluminum-containing antacids,” The American Journal of the Medical Sciences, vol. 297, no. 1, pp. 9–11, 1989. View at Publisher · View at Google Scholar · View at Scopus
  131. V. Solfrizzi, A. M. Colacicco, A. D'Introno et al., “Macronutrients, aluminium from drinking water and foods, and other metals in cognitive decline and dementia,” Journal of Alzheimer's Disease, vol. 10, no. 2-3, pp. 303–330, 2006. View at Google Scholar · View at Scopus
  132. D. Fekkes, T. J. M. van der Cammen, C. P. M. van Loon et al., “Abnormal amino acid metabolism in patients with early stage Alzheimer dementia,” Journal of Neural Transmission, vol. 105, no. 2-3, pp. 287–294, 1998. View at Publisher · View at Google Scholar · View at Scopus
  133. J. K. Hou, J. R. Kramer, P. Richardson, M. Mei, and H. B. El-Serag, “The incidence and prevalence of inflammatory bowel disease among U.S. veterans: a national cohort study,” Inflammatory Bowel Diseases, vol. 19, no. 5, pp. 1059–1064, 2013. View at Publisher · View at Google Scholar · View at Scopus
  134. H. B. El-Serag, “Time trends of gastroesophageal reflux disease: a systematic review,” Clinical Gastroenterology and Hepatology, vol. 5, no. 1, pp. 17–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. J. C. Hoffmann, N. N. Pawlowski, A. A. Kühl, W. Höhne, and M. Zeitz, “Animal models of inflammatory bowel disease: an overview,” Pathobiology, vol. 70, no. 3, pp. 121–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. S. Keller, C. Vargas, H. Zhao, G. Piszczek, C. A. Brautigam, and P. Schuck, “High-precision isothermal titration calorimetry with automated peak-shape analysis,” Analytical Chemistry, vol. 84, no. 11, pp. 5066–5073, 2012. View at Publisher · View at Google Scholar · View at Scopus
  137. J. C. Martinez, J. Murciano-Calles, E. S. Cobos, M. Iglesias-Bexiga, I. Luque, and J. Ruiz-Sanz, “Isothermal titration calorimetry: thermodynamic analysis of the binding thermograms of molecular recognition events by using equilibrium models,” in Applications of Calorimetry in a Wide Context—Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry, A. A. Elkordy, Ed., chapter 4, InTech, 2013. View at Publisher · View at Google Scholar
  138. C. Zhou, Y. Gao, and G. Li, “Technology of recovery effective components in wastewater from glyphosate production by dynamic adsorption method,” CIESC Journal, vol. 64, no. 4, pp. 1453–1458, 2013 (Chinese). View at Publisher · View at Google Scholar · View at Scopus
  139. F. Guo and J. M. Friedman, “Charge density-dependent modifications of hydration shell waters by hofmeister ions,” Journal of the American Chemical Society, vol. 131, no. 31, pp. 11010–11018, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. F. Hervé, N. Ghinea, and J.-M. Scherrmann, “CNS delivery via adsorptive transcytosis,” AAPS Journal, vol. 10, no. 3, pp. 455–472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Han, J. Lemire, V. P. Appanna, C. Auger, Z. Castonguay, and V. D. Appanna, “How aluminum, an intracellular ROS generator promotes hepatic and neurological diseases: the metabolic tale,” Cell Biology and Toxicology, vol. 29, no. 2, pp. 75–84, 2013. View at Publisher · View at Google Scholar · View at Scopus
  142. C. Exley, “The pro-oxidant activity of aluminum,” Free Radical Biology & Medicine, vol. 36, no. 3, pp. 380–387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  143. G. N. Ling, “An updated and further developed theory and evidence for the close-contact, one-on-one association of nearly all cell K+ with β- and γ-carboxyl groups of intracellular proteins,” Physiological Chemistry and Physics and Medical, vol. 37, no. 1, pp. 1–63, 2005. View at Google Scholar · View at Scopus
  144. G. Ling, “Nano-protoplasm: the ultimate unit of life,” Physiological Chemistry and Physics and Medical NMR, vol. 39, no. 2, pp. 111–234, 2007. View at Google Scholar · View at Scopus
  145. G. N. Ling, Life: At the Cell and below Cell, Pacific Press, New York, NY, USA, 2001.
  146. T. M. Riddick, Control of Colloid Stability through Zeta Potential: With a Closing Chapter on Its Relationship to Cardiovascular Disease, Livingston, Wynnewood, Pa, USA, 1968.
  147. M. D. Newton and H. L. Friedman, “A proposed neutron diffraction experiment to measure hydrogen isotope fractionation in solution,” The Journal of Chemical Physics, vol. 83, no. 10, pp. 5210–5218, 1985. View at Publisher · View at Google Scholar · View at Scopus
  148. M. M. Probst and K. Hermansson, “On frequency shifts in OH stretching vibrations of hydrated cations,” The Journal of Chemical Physics, vol. 96, no. 12, pp. 8995–9004, 1992. View at Publisher · View at Google Scholar · View at Scopus
  149. G. G. R. Desiraju and T. Steiner, “The weak hydrogen bond,” in Structural Chemistry and Biology, p. 507, Oxford University Press, Oxford, UK, 2001. View at Google Scholar
  150. J. Joseph and E. D. Jemmis, “Red-, blue-, or no-shift in hydrogen bonds: a unified explanation,” Journal of the American Chemical Society, vol. 129, no. 15, pp. 4620–4632, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. E. D. Jemmis and P. Parameswaran, “Structure and bonding in cyclic isomers of BAl2Hnm (n = 3 − 6, m =−2 to +1): preference for planar tetracoordination, pyramidal tricoordination, and divalency,” Chemistry, vol. 13, pp. 2622–2631, 2007. View at Google Scholar
  152. D. Gallez and W. T. Coakley, “Interfacial instability at cell membranes,” Progress in Biophysics and Molecular Biology, vol. 48, no. 3, pp. 155–199, 1986. View at Publisher · View at Google Scholar · View at Scopus
  153. K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, “Cooperativity in ion hydration,” Science, vol. 328, no. 5981, pp. 1006–1009, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. S. L. Budd, L. Tenneti, T. Lishnak, and S. A. Lipton, “Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 11, pp. 6161–6166, 2000. View at Publisher · View at Google Scholar · View at Scopus
  155. J. J. Lemasters and V. K. Ramshesh, “Imaging of mitochondrial polarization and depolarization with cationic fluorophores,” Methods in Cell Biology, vol. 80, pp. 283–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  156. M. Sivaguru, S. Pike, W. Gassmann, and T. I. Baskin, “Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor,” Plant and Cell Physiology, vol. 44, no. 7, pp. 667–675, 2003. View at Publisher · View at Google Scholar · View at Scopus
  157. D. Busselberg, B. Platt, D. Michael, D. O. Carpenter, and H. L. Haas, “Mammalian voltage-activated calcium channel currents are blocked by Pb2+, Zn2+, and Al3+,” Journal of Neurophysiology, vol. 71, no. 4, pp. 1491–1497, 1994. View at Google Scholar · View at Scopus
  158. D. Julka and K. D. Gill, “Altered calcium homeostasis: a possible mechanism of aluminium-induced neurotoxicity,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1315, no. 1, pp. 47–54, 1996. View at Publisher · View at Google Scholar · View at Scopus
  159. S. K. Pal and A. H. Zewail, “Dynamics of water in biological recognition,” Chemical Reviews, vol. 104, pp. 2099–2123, 2004. View at Google Scholar
  160. R. G. Oliveira, E. Schneck, S. S. Funari, M. Tanaka, and B. Maggio, “Equivalent aqueous phase modulation of domain segregation in myelin monolayers and bilayer vesicles,” Biophysical Journal, vol. 99, no. 5, pp. 1500–1509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. B. Chai, H. Yoo, and G. H. Pollack, “Effect of radiant energy on near-surface water,” Journal of Physical Chemistry B, vol. 113, no. 42, pp. 13953–13958, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. S. Sadiq, Z. Ghazala, A. Chowdhury, and D. Büsselberg, “Metal toxicity at the synapse: presynaptic, postsynaptic, and long-term effects,” Journal of Toxicology, vol. 2012, Article ID 132671, 42 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  163. B. Platt, H. Haas, and D. Büsselberg, “Extracellular pH modulates aluminium-blockade of mammalian voltage-activated calcium channel currents,” NeuroReport, vol. 4, no. 11, pp. 1251–1254, 1993. View at Publisher · View at Google Scholar · View at Scopus
  164. B. Platt and D. Büsselberg, “Actions of aluminum on voltage-activated calcium channels currents,” Cellular and Molecular Neurobiology, vol. 14, pp. 819–829, 1994. View at Google Scholar
  165. P. Q. Trombley, “Selective modulation of GABA(A) receptors by aluminum,” Journal of Neurophysiology, vol. 80, no. 2, pp. 755–761, 1998. View at Google Scholar · View at Scopus
  166. M. Kawahara, “Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases,” Journal of Alzheimer's Disease, vol. 8, no. 2, pp. 171–182, 2005. View at Google Scholar · View at Scopus
  167. J. W. Oller Jr., S. D. Oller, and L. C. Badon, Cases: Introducing Communication Disorders Across the Life Span, Plural Publishing, San Diego, Calif, USA, 2010.
  168. J. W. Oller Jr. and S. D. Oller, Autism: The Diagnosis, Treatment, and Etiology of the Undeniable Autism Epidemic, Jones and Bartlett, Boston, Mass, USA, 2010.
  169. J. W. Oller Jr., S. D. Oller, and S. N. Oller, Milestones: Normal Speech and Language Development across the Span, Plural Publishing, San Diego, Calif, USA, 2nd edition, 2014.
  170. B. Johansson and S. Sukhotskaya, “Allometric scaling behavior—a quantum dissipative state implies a reduction in thermal infrared emission and fractal ordering in distilled coherent water,” Water, vol. 3, pp. 100–121, 2012. View at Google Scholar
  171. P. Ball, “Water as an active constituent in cell biology,” Chemical Reviews, vol. 108, no. 1, pp. 74–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  172. J. Zheng and G. H. Pollack, “Long-range forces extending from polymer-gel surfaces,” Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, vol. 68, Article ID 031408, 2003. View at Publisher · View at Google Scholar
  173. D. T. Nhan and G. H. Pollack, “Effect of particle diameter on exclusion-zone size,” International Journal of Design and Nature and Ecodynamics, vol. 6, no. 2, pp. 139–144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  174. R. S. Lillie, Protoplasmic Action and Nervous Action, University of Chicago Press, 1923.
  175. A. I. Oparin and A. Synge, The Origin of Life on the Earth, Academic Press, New York, NY, USA, 3rd edition, 1957, translated by A. Synge.
  176. E. G. del Giudice, P. R. Spinetti, and A. Tedeschi, “Water dynamics at the root of metamorphosis in living organisms,” Water, vol. 2, pp. 566–586, 2010. View at Google Scholar
  177. S. Hartzell and S. Seneff, “Impaired sulfate metabolism and epigenetics: is there a link in autism?” Entropy, vol. 14, pp. 1953–1977, 2012. View at Google Scholar
  178. R. G. Oliveira, M. Tanaka, and B. Maggio, “Many length scales surface fractality in monomolecular films of whole myelin lipids and proteins,” Journal of Structural Biology, vol. 149, no. 2, pp. 158–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  179. J. J. Harrison, R. J. Turner, D. A. Joo et al., “Copper and quaternary ammonium cations exert synergistic bactericidal and antibiofilm activity against Pseudomonas aeruginosa,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 8, pp. 2870–2881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  180. R. S. Renslow, P. D. Majors, J. S. McLean, J. K. Fredrickson, B. Ahmed, and H. Beyenal, “In situ effective diffusion coefficient profiles in live biofilms using pulsed-field gradient nuclear magnetic resonance,” Biotechnology and Bioengineering, vol. 106, no. 6, pp. 928–937, 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. G. N. Ling, “Coherent behavior and control mechanisms,” in A Revolution in the Physiology of the Living Cell, pp. 135–158, Krieger, Malabar, Fla, USA, 1991. View at Google Scholar
  182. S. Sharma and P. G. Debenedetti, “Evaporation rate of water in hydrophobic confinement,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 12, pp. 4365–4370, 2012. View at Publisher · View at Google Scholar · View at Scopus
  183. H. Selye, Thrombohemorrhagic Phenomena, Charles C. Thomas, Springfield, Ill, USA, 1966.
  184. H. Selye, In Vivo: The Case for Supramolecular Biology, Liveright, New York, NY, USA, 1967.
  185. E. D. Giudice, A. Tedeschi, G. Vitiello, and V. Voeikov, “Coherent structures in liquid water close to hydrophilic surfaces,” Journal of Physics: Conference Series, vol. 442, no. 1, Article ID 012028, 2013. View at Publisher · View at Google Scholar · View at Scopus
  186. I. Prigogine, Thermodynamics of Irreversible Processes, John Wiley & Sons, New York, NY, USA, 1955.
  187. F. Günther, Self- organisation in systems far from thermodynamic equilibrium: some clues to the structure and function of biological systems [Ph.D. thesis], Department of Systems Ecology, Stockholm University, Stockholm, Sweden, 1994.
  188. C. N. R. Rao, P. C. Dwivedi, H. Ratajczak, and W. J. Orville-Thomas, “Relation between O-H stretching frequency and hydrogen bond energy: Re-examination of the Badger-Bauer rule,” Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, vol. 71, pp. 955–966, 1975. View at Publisher · View at Google Scholar · View at Scopus
  189. S. Melandri, “‘Union is strength’: how weak hydrogen bonds become stronger,” Physical Chemistry Chemical Physics, vol. 13, no. 31, pp. 13901–13911, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. G. Gilli and P. Gilli, “Towards an unified hydrogen-bond theory,” Journal of Molecular Structure, vol. 552, no. 1–3, pp. 1–15, 2000. View at Publisher · View at Google Scholar · View at Scopus
  191. M. Falk, “The frequency of the HOH bending fundamental in solids and liquids,” Spectrochimica Acta A: Molecular Spectroscopy, vol. 40, no. 1, pp. 43–48, 1984. View at Publisher · View at Google Scholar · View at Scopus
  192. S. Imoto, S. S. Xantheas, and S. Saito, “Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice,” Journal of Chemical Physics, vol. 138, no. 5, Article ID 054506, 2013. View at Publisher · View at Google Scholar · View at Scopus
  193. J. I. Mujika, F. Ruipérez, I. Infante, J. M. Ugalde, C. Exley, and X. Lopez, “Pro-oxidant activity of aluminum: stabilization of the aluminum superoxide radical ion,” Journal of Physical Chemistry A, vol. 115, no. 24, pp. 6717–6723, 2011. View at Publisher · View at Google Scholar · View at Scopus
  194. G. Rayner-Canham and T. Overton, “Polorization and covalency,” in Descriptive Inorganic Chemistry, pp. 96–97, W. H. Freeman, New York, NY, USA, 2010. View at Google Scholar
  195. Y. Marcus, Supercritical Water, John Wiley & Sons, Hoboken, NJ, USA, 2012.
  196. B. Hribar, N. T. Southall, V. Vlachy, and K. A. Dill, “How ions affect the structure of water,” Journal of the American Chemical Society, vol. 124, no. 41, pp. 12302–12311, 2002. View at Publisher · View at Google Scholar · View at Scopus
  197. J. E. House, “Inorganic chemistry,” in Inorganic Chemistry, pp. 229–237, Academic Press, Burlington, Mass, USA, 2008. View at Google Scholar
  198. Y. Marcus, Ion Properties, Marcel Dekker, New York, NY, USA, 1997.
  199. D. Russo, “The impact of kosmotropes and chaotropes on bulk and hydration shell water dynamics in a model peptide solution,” Chemical Physics, vol. 345, no. 2-3, pp. 200–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  200. A. Campbell, D. Hamai, and S. C. Bondy, “Differential toxicity of aluminum salts in human cell lines of neural origin: implications for neurodegeneration,” NeuroToxicology, vol. 22, no. 1, pp. 63–71, 2001. View at Publisher · View at Google Scholar · View at Scopus
  201. S. C. Bondy and S. Kirstein, “The promotion of iron-induced generation of reactive oxygen species in nerve tissue by aluminum,” Molecular and Chemical Neuropathology, vol. 27, no. 2, pp. 185–194, 1996. View at Publisher · View at Google Scholar · View at Scopus
  202. A. S. Mahadevi and G. N. Sastry, “Cation-π interaction: its role and relevance in chemistry, biology, and material science,” Chemical Reviews, vol. 113, pp. 2100–2138, 2013. View at Google Scholar
  203. S. J. Stohs and D. Bagchi, “Oxidative mechanisms in the toxicity of metal ions,” Free Radical Biology and Medicine, vol. 18, no. 2, pp. 321–336, 1995. View at Publisher · View at Google Scholar · View at Scopus
  204. A. Campbell, A. Becaria, D. K. Lahiri, K. Sharman, and S. C. Bondy, “Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain,” Journal of Neuroscience Research, vol. 75, no. 4, pp. 565–572, 2004. View at Publisher · View at Google Scholar · View at Scopus
  205. J. T. Kiss, “From coordination chemistry to biological chemistry of aluminium,” Journal of Inorganic Biochemistry, vol. 128, pp. 156–163, 2013. View at Publisher · View at Google Scholar
  206. J. Beardmore and C. Exley, “Towards a model of non-equilibrium binding of metal ions in biological systems,” Journal of Inorganic Biochemistry, vol. 103, no. 2, pp. 205–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  207. M. F. Chaplin, “Waters hydrogen bond strength,” in Water and Life: The Unique Properties of H2O, R. M. Lynden-Bell, S. Conway Morris, J. D. Barrow, J. L. Finney, and C. L. Harper, Eds., pp. 69–86, CRC Press, Boca Raton, Fla, USA, 2010. View at Google Scholar
  208. J. Kamalov, D. O. Carpenter, and I. Birman, “Cytotoxicity of environmentally relevant concentrations of aluminum in murine thymocytes and lymphocytes,” Journal of Toxicology, vol. 2011, Article ID 796719, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  209. J. Kern, B. Haley, D. Geier, L. Sykes, P. King, and M. Geier, “Thimerosal exposure and the role of sulfation chemistry and thiol availability in autism,” International Journal of Environmental Research and Public Health, vol. 10, no. 8, pp. 3771–3800, 2013. View at Google Scholar
  210. S. J. James, S. Rose, S. Melnyk et al., “Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism,” The FASEB Journal, vol. 23, no. 8, pp. 2374–2383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  211. A. I. Pogue, Y. Y. Li, J. G. Cui et al., “Characterization of an NF-κB-regulated, miRNA-146a-mediated down-regulation of complement factor H (CFH) in metal-sulfate-stressed human brain cells,” Journal of Inorganic Biochemistry, vol. 103, no. 11, pp. 1591–1595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  212. A. I. Pogue, B. M. Jones, S. Bhattacharjee, M. E. Percy, Y. Zhao, and W. J. Lukiw, “Metal-sulfate induced generation of ROS in human brain cells: detection using an isomeric mixture of 5- and 6-carboxy-2′,7′-dichlorofluorescein diacetate (carboxy-DCFDA) as a cell permeant tracer,” International Journal of Molecular Sciences, vol. 13, no. 8, pp. 9615–9626, 2012. View at Publisher · View at Google Scholar · View at Scopus
  213. B. E. Haley, “Mercury toxicity: genetic susceptibility and synergistic effects,” Medical Veritas, vol. 2, pp. 535–542, 2005. View at Google Scholar
  214. S. Acosta-Gutiérrez, J. Hernández-Rojas, J. Bretón, J. M. G. Llorente, and D. J. Wales, “Physical properties of small water clusters in low and moderate electric fields,” The Journal of Chemical Physics, vol. 135, no. 12, Article ID 124303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  215. S. Sabella, R. P. Carney, V. Brunetti et al., “A general mechanism for intracellular toxicity of metal-containing nanoparticles,” Nanoscale, vol. 6, pp. 7052–7061, 2014. View at Google Scholar
  216. H. Frauenfelder, G. Chen, J. Berendzen et al., “A unified model of protein dynamics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5129–5134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  217. S. H. Chen, M. Lagi, X. Q. Chu et al., “Dynamics of a globular protein and its hydration water studied by neutron scattering and MD simulations,” Spectroscopy, vol. 24, no. 1-2, pp. 1–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  218. W. R. Harris, Z. Wang, and Y. Z. Hamada, “Competition between transferrin and the serum ligands citrate and phosphate for the binding of aluminum,” Inorganic Chemistry, vol. 42, no. 10, pp. 3262–3273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  219. G. S. Waldo and E. C. Theil, “Formation of iron(III)-tyrosinate is the fastest reaction observed in ferritin,” Biochemistry, vol. 32, no. 48, pp. 13262–13269, 1993. View at Publisher · View at Google Scholar · View at Scopus
  220. X. Liu and E. C. Theil, “Ferritins: dynamic management of biological iron and oxygen chemistry,” Accounts of Chemical Research, vol. 38, no. 3, pp. 167–175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  221. S. Tang, R. MacColl, and P. J. Parsons, “Spectroscopic study of the interaction of aluminum ions with human transferrin,” Journal of Inorganic Biochemistry, vol. 60, no. 3, pp. 175–185, 1995. View at Publisher · View at Google Scholar · View at Scopus
  222. R. A. Yokel, “Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration,” Journal of Alzheimer's Disease, vol. 10, no. 2-3, pp. 223–253, 2006. View at Google Scholar · View at Scopus
  223. H. J. H. Fenton, “LXXIII.—Oxidation of tartaric acid in presence of iron,” Journal of the Chemical Society, Transactions, vol. 65, pp. 899–910, 1894. View at Publisher · View at Google Scholar · View at Scopus
  224. I. Bone and M. Thomas, “Dialysis dementia, aluminium, and tetrahydrobiopterin metabolism,” The Lancet, vol. 313, no. 8119, p. 782, 1979. View at Google Scholar · View at Scopus
  225. A. Rotundo, T. E. Nevins, M. Lipton, L. A. Lockman, S. M. Mauer, and A. F. Michael, “Progressive encephalopathy in children with chronic renal insufficiency in infancy,” Kidney International, vol. 21, no. 3, pp. 486–491, 1982. View at Publisher · View at Google Scholar · View at Scopus
  226. Z. Z. Altindag, T. Baydar, A. B. Engin, and G. Sahin, “Effects of the metals on dihydropteridine reductase activity,” Toxicology in Vitro, vol. 17, no. 5-6, pp. 533–537, 2003. View at Publisher · View at Google Scholar · View at Scopus
  227. Y. Tani, E. Fernell, Y. Watanabe, T. Kanai, and B. Langstrom, “Decrease in GR-5,6,7,8-tetrahydrobiopterin content in cerebrospinal fluid of autistic patients,” Neuroscience Letters, vol. 181, no. 1-2, pp. 169–172, 1994. View at Publisher · View at Google Scholar · View at Scopus
  228. R. E. Frye, L. C. Huffman, and G. R. Elliott, “Tetrahydrobiopterin as a novel therapeutic intervention for autism,” Neurotherapeutics, vol. 7, no. 3, pp. 241–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  229. H. F. Nijhout, M. C. Reed, P. Budu, and C. M. Ulrich, “A mathematical model of the folate cycle: new insights into folate homeostasis,” The Journal of Biological Chemistry, vol. 279, no. 53, pp. 55008–55016, 2004. View at Publisher · View at Google Scholar · View at Scopus
  230. M. J. Crabtree, A. L. Tatham, Y. Al-Wakeel et al., “Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status insights from cells with TET-regulated GTP cyclohydrolasei expression,” Journal of Biological Chemistry, vol. 284, no. 2, pp. 1136–1144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  231. A. Ponzone, M. Spada, S. Ferraris, I. Dianzani, and L. De Sanctis, “Dihydropteridine reductase deficiency in man: From biology to treatment,” Medicinal Research Reviews, vol. 24, no. 2, pp. 127–150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  232. I. Smith, K. Hyland, and B. Kendall, “Clinical role of pteridine therapy in tetrahydrobiopterin deficiency,” Journal of Inherited Metabolic Disease, vol. 8, no. 1, pp. 39–45, 1985. View at Publisher · View at Google Scholar · View at Scopus
  233. M. Waly, H. Olteanu, R. Banerjee et al., “Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal,” Molecular Psychiatry, vol. 9, no. 4, pp. 358–370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  234. R. Carmel, S. Melnyk, and S. J. James, “Cobalamin deficiency with and without neurologic abnormalities: differences in homocysteine and methionine metabolism,” Blood, vol. 101, no. 8, pp. 3302–3308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  235. H. G. Yang, B. L. Lee, Y. X. Liang, Y. X. Zheng, and C. N. Ong, “The effects of exposure to aluminium on neurobehavioural function and dopaminergic metabolism,” International Journal of Environmental Health Research, vol. 8, no. 2, pp. 101–110, 1998. View at Publisher · View at Google Scholar · View at Scopus
  236. J. Wegiel, I. Kuchna, K. Nowicki et al., “The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes,” Acta Neuropathologica, vol. 119, no. 6, pp. 755–770, 2010. View at Publisher · View at Google Scholar · View at Scopus
  237. N. Siegel and A. Haug, “Aluminum interaction with calmodulin. Evidence for altered structure and function from optical and enzymatic studies,” Biochimica et Biophysica Acta, vol. 744, no. 1, pp. 36–45, 1983. View at Publisher · View at Google Scholar · View at Scopus
  238. G. Topal, A. Brunet, E. Millanvoye et al., “Homocysteine induces oxidative stress by uncoupling of no synthase activity through reduction of tetrahydrobiopterin,” Free Radical Biology and Medicine, vol. 36, no. 12, pp. 1532–1541, 2004. View at Publisher · View at Google Scholar · View at Scopus
  239. T. J. Guzik, R. Korbut, and T. Adamek-Guzik, “Nitric oxide and superoxide in inflammation and immune regulation,” Journal of Physiology and Pharmacology, vol. 54, no. 4, pp. 469–487, 2003. View at Google Scholar · View at Scopus
  240. X. Li, A. Chauhan, A. M. Sheikh et al., “Elevated immune response in the brain of autistic patients,” Journal of Neuroimmunology, vol. 207, no. 1-2, pp. 111–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  241. S. Y. Lo, X. Geng, and D. Gann, “Evidence for the existence of stable-water-clusters at room temperature and normal pressure,” Physics Letters A: General, Atomic and Solid State Physics, vol. 373, no. 42, pp. 3872–3876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  242. S. Y. Lo and B. Bonavida, “Physical, chemical and biological properties of stable water IE clusters,” in Procedings of the 1st International Symposium on Physical, Chemical and Biological Properties of Stable Water (IE) Clusters, p. 212, World Scientific, Singapore, 1998.
  243. J. K. Kern and A. M. Jones, “Evidence of toxicity, oxidative stress, and neuronal insult in autism,” Journal of Toxicology and Environmental Health B, vol. 9, no. 6, pp. 485–499, 2006. View at Publisher · View at Google Scholar · View at Scopus
  244. M. J. Caulfield, L. Shi, S. Wang et al., “Effect of alternative aluminum adjuvants on the absorption and immunogenicity of HPV16 L1 VLPs in mice,” Human Vaccines, vol. 3, no. 4, pp. 139–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  245. E. B. Lindblad, “Aluminium adjuvants—in retrospect and prospect,” Vaccine, vol. 22, no. 27-28, pp. 3658–3668, 2004. View at Publisher · View at Google Scholar · View at Scopus
  246. H. HogenEsch, “Mechanisms of stimulation of the immune response by aluminum adjuvants,” Vaccine, vol. 20, no. 3, pp. S34–S39, 2002. View at Publisher · View at Google Scholar · View at Scopus
  247. J. M. Brewer and J. Alexander, “Cytokines and the mechanisms of action of vaccine adjuvants,” Cytokines, Cellular & Molecular Therapy, vol. 3, no. 4, pp. 233–246, 1997. View at Google Scholar · View at Scopus
  248. J. M. Brewer, M. Conacher, C. A. Hunter, M. Mohrs, F. Brombacher, and J. Alexander, “Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling,” Journal of Immunology, vol. 163, no. 12, pp. 6448–6454, 1999. View at Google Scholar · View at Scopus
  249. S. Wang, X. Liu, K. Fisher et al., “Enhanced type I immune response to a hepatitis B DNA vaccine by formulation with calcium- or aluminum phosphate,” Vaccine, vol. 18, no. 13, pp. 1227–1235, 2000. View at Publisher · View at Google Scholar · View at Scopus
  250. T. Dunning, “Accurate methods for the statistics of surprise and coincidence,” Computational Linguistics, vol. 19, p. 6174, 1993. View at Google Scholar
  251. K. M. Jan and S. Chien, “Role of surface electric charge in red blood cell interactions.,” Journal of General Physiology, vol. 61, no. 5, pp. 638–654, 1973. View at Publisher · View at Google Scholar · View at Scopus
  252. G. Oliver and M. Detmar, “The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature,” Genes and Development, vol. 16, no. 7, pp. 773–783, 2002. View at Publisher · View at Google Scholar · View at Scopus
  253. M. W. Peterson, P. Stone, and D. M. Shasby, “Cationic neutrophil proteins increase transendothelial albumin movement,” Journal of Applied Physiology, vol. 62, no. 4, pp. 1521–1530, 1987. View at Publisher · View at Google Scholar · View at Scopus
  254. G. F. Liptrot, Modern Inorganic Chemistry, Mills & Boons, London, UK, 1974.
  255. R. B. Martin, “Ternary complexes of Al3+ and F with a third ligand,” Coordination Chemistry Reviews, vol. 149, pp. 23–32, 1996. View at Publisher · View at Google Scholar · View at Scopus
  256. A. Strunecká and J. Patocka, “Aluminofluoride complexes: a useful tool in laboratory investigations, but a hidden danger for living organisms?” in Group 13 Chemistry: Fundamental Research, Material Science and Catalysis, P. Shapiro and D. Atwood, Eds., vol. 822 of ACS Symposium Series, chapter 19, 2002. View at Google Scholar
  257. A. Strunecká, R. Blaylock, and J. Patocka, “Aluminofluoride complexes: phosphate analogues and a hidden hazard for living organisms,” Current Inorganic Chemistry, vol. 2, pp. 8–18, 2012. View at Google Scholar
  258. A. Strunecká and J. Patocka, “Chapter 19,” in Group 13 Chemistry: Fundamental Research, Material Science and Catalysis, P. Shapiro and D. Atwood, Eds., ACS Symposium Series 822, 2002. View at Google Scholar
  259. M. Bubis, “Facilitation and inhibition of G-protein regulated protein secretion by melatonin,” Neurochemistry International, vol. 27, no. 2, pp. 177–183, 1995. View at Publisher · View at Google Scholar · View at Scopus
  260. H. E. Hamm, “The many faces of G protein signaling,” The Journal of Biological Chemistry, vol. 273, no. 2, pp. 669–672, 1998. View at Publisher · View at Google Scholar · View at Scopus
  261. N. Wettschureck and S. Offermanns, “Mammalian G proteins and their cell type specific functions,” Physiological Reviews, vol. 85, no. 4, pp. 1159–1204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  262. A. Strunecká and J. Patocka, “Aluminofluoride complexes in the etiology of Alzheimer’s disease,” Structure and Bonding, vol. 104, pp. 139–180, 2003. View at Google Scholar
  263. J. A. Varner, K. F. Jensen, W. Horvath, and R. L. Isaacson, “Chronic administration of aluminum-fluoride or sodium-fluoride to rats in drinking water: alterations in neuronal and cerebrovascular integrity,” Brain Research, vol. 784, no. 1-2, pp. 284–298, 1998. View at Publisher · View at Google Scholar · View at Scopus
  264. S. Mac Neil, T. Lakey, and S. Tomlinson, “Calmodulin regulation of adenylate cyclase activity,” Cell Calcium, vol. 6, no. 3, pp. 213–226, 1985. View at Publisher · View at Google Scholar · View at Scopus
  265. L. Lyras, N. J. Cairns, A. Jenner, P. Jenner, and B. Halliwell, “An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease,” Journal of Neurochemistry, vol. 68, no. 5, pp. 2061–2069, 1997. View at Google Scholar · View at Scopus
  266. D. A. Butterfield, J. Drake, C. Pocernich, and A. Castegna, “Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid β-peptide,” Trends in Molecular Medicine, vol. 7, no. 12, pp. 548–554, 2001. View at Publisher · View at Google Scholar · View at Scopus
  267. P. Mecocci, U. MacGarvey, and M. F. Beal, “Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease,” Annals of Neurology, vol. 36, no. 5, pp. 747–751, 1994. View at Publisher · View at Google Scholar · View at Scopus
  268. T. Kurz, A. Terman, B. Gustafsson, and U. T. Brunk, “Lysosomes and oxidative stress in aging and apoptosis,” Biochimica et Biophysica Acta—General Subjects, vol. 1780, no. 11, pp. 1291–1303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  269. R. Castellani, K. Hirai, G. Aliev et al., “Role of mitochondrial dysfunction in Alzheimer's disease,” Journal of Neuroscience Research, vol. 70, no. 3, pp. 357–360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  270. P. I. Moreira, C. Carvalho, X. Zhu, M. A. Smith, and G. Perry, “Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology,” Biochimica et Biophysica Acta: Molecular Basis of Disease, vol. 1802, no. 1, pp. 2–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  271. S. Reitsma, D. W. Slaaf, H. Vink, M. A. M. J. Van Zandvoort, and M. G. A. Oude Egbrink, “The endothelial glycocalyx: composition, functions, and visualization,” Pflugers Archiv: European Journal of Physiology, vol. 454, no. 3, pp. 345–359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  272. M. Nieuwdorp, M. C. Meuwese, H. L. Mooij et al., “Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability,” Journal of Applied Physiology, vol. 104, no. 3, pp. 845–852, 2008. View at Publisher · View at Google Scholar · View at Scopus
  273. R. D. Rosenberg, N. W. Shworak, J. Liu, J. J. Schwartz, and L. Zhang, “Heparan sulfate proteoglycans of the cardiovascular system: specific structures emerge but how is synthesis regulated?” The Journal of Clinical Investigation, vol. 100, no. 11, pp. S67–S75, 1997. View at Google Scholar · View at Scopus
  274. M. J. Lee, S. Thangada, J. H. Paik et al., “Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis,” Molecular Cell, vol. 8, no. 3, pp. 693–704, 2001. View at Publisher · View at Google Scholar · View at Scopus
  275. X. Han, D. M. Holtzman, D. W. McKeel Jr., J. Kelley, and J. C. Morris, “Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis,” Journal of Neurochemistry, vol. 82, no. 4, pp. 809–818, 2002. View at Publisher · View at Google Scholar · View at Scopus
  276. T. J. Taylor, C. Hartley, P. Simon, I. Z. Kiss, and L. Berthouze, “Identification of criticality in neuronal avalanches: I. A theoretical investigation of the non-driven case,” Journal of Mathematical Neuroscience, vol. 3, article 5, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  277. S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, “Catastrophic cascade of failures in interdependent networks,” Nature, vol. 464, no. 7291, pp. 1025–1028, 2010. View at Publisher · View at Google Scholar · View at Scopus