Table of Contents Author Guidelines Submit a Manuscript
Journal of Tropical Medicine
Volume 2013, Article ID 275253, 7 pages
http://dx.doi.org/10.1155/2013/275253
Research Article

Post-Kala-Azar Dermal Leishmaniasis: A Paradigm of Paradoxical Immune Reconstitution Syndrome in Non-HIV/AIDS Patients

1The Leishmaniasis Research Group, Sudan
2Institute of Endemic Diseases, University of Khartoum, P.O. Box 45235, 11111 Khartoum, Sudan
3The Central Laboratory, Ministry of Science & Communications, 7099 Khartoum, Sudan
4Tropical Diseases Hospital, Omdurman, Sudan

Received 22 November 2012; Accepted 21 February 2013

Academic Editor: Abul Faiz

Copyright © 2013 Eltahir Awad Gasim Khalil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. E. Zijlstra and A. M. El Hassan, “Leishmaniasis in Sudan. Visceral leishmaniasis,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 95, pp. S27–S58, 2001. View at Google Scholar · View at Scopus
  2. S. L. Croft, S. Sundar, and A. H. Fairlamb, “Drug resistance in leishmaniasis,” Clinical Microbiology Reviews, vol. 19, no. 1, pp. 111–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Hailu, A. Musa, M. Wasunna et al., “Geographical variation in the response of visceral leishmaniasis to paromomycin in East Africa: a multicentre, open-label, randomized trial,” PLoS Neglected Tropical Diseases, vol. 4, no. 10, article e709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. K. Sinha, P. Roddy, P. P. Palma et al., “Effectiveness and safety of liposomal amphotericin b for visceral leishmaniasis under routine program conditions in Bihar, India,” American Journal of Tropical Medicine and Hygiene, vol. 83, no. 2, pp. 357–364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Desjeux, “Leishmania/HIV co-infections,” Africa Health, vol. 18, no. 1, pp. 20–22, 1995. View at Google Scholar · View at Scopus
  6. P. Mathur, J. C. Samantaray, M. Vajpayee, and P. Samanta, “Visceral leishmaniasis/human immunodeficiency virus co-infection in India: the focus of two epidemics,” Journal of Medical Microbiology, vol. 55, part 7, pp. 919–922, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Ezra, M. T. Ochoa, and N. Craft, “Human immunodeficiency virus and leishmaniasis,” Journal of Global Infectious Diseases, vol. 2, no. 3, pp. 248–257, 2010. View at Google Scholar
  8. Z. Hurissa, S. Gebre-Silassie, W. Hailu et al., “Clinical characteristics and treatment outcome of patients with visceral leishmaniasis and HIV co-infection in northwest Ethiopia,” Tropical Medicine and International Health, vol. 15, no. 7, pp. 848–855, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Zhou, T. Sirisanthana, S. Kiertiburanakul et al., “Trends in CD4 counts in HIV-infected patients with HIV viral load monitoring while on combination antiretroviral treatment: results from The TREAT Asia HIV Observational Database,” BMC Infectious Diseases, vol. 10, article 361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. E. T. Nascimento, M. L. N. Moura, J. W. Queiroz et al., “The emergence of concurrent HIV-1/AIDS and visceral leishmaniasis in Northeast Brazil,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 105, no. 5, pp. 298–300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. E. M. Carvalho, R. S. Teixeira, and W. D. Johnson, “Cell-mediated immunity in American visceral leishmaniasis: reversible immunosuppression during acute infection,” Infection and Immunity, vol. 33, no. 2, pp. 498–502, 1981. View at Google Scholar · View at Scopus
  12. J. P. Haldar, S. Ghose, K. C. Saha, and A. C. Ghose, “Cell-mediated immune response in Indian kala azar and post-kala azar dermal leishmaniasis,” Infection and Immunity, vol. 42, no. 2, pp. 702–707, 1983. View at Google Scholar · View at Scopus
  13. E. M. Carvalho, R. Badaro, S. G. Reed, T. C. Jones, and W. D. Johnson, “Absence of gamma interferon and interleukin 2 production during active visceral leishmaniasis,” Journal of Clinical Investigation, vol. 76, no. 6, pp. 2066–2069, 1985. View at Google Scholar · View at Scopus
  14. K. A. Weigle, L. Valderrama, A. L. Arias, C. Santrich, and N. G. Saravia, “Leishmanin skin test standardization and evaluation of safety, dose, storage, longevity of reaction and sensitization,” American Journal of Tropical Medicine and Hygiene, vol. 44, no. 3, pp. 260–271, 1991. View at Google Scholar · View at Scopus
  15. E. E. Zijlstra and A. M. El Hassan, “Leishmanin and tuberculin sensitivity in leishmaniasis in the Sudan, with special reference to kala-azar,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 87, no. 4, pp. 425–427, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. E. A. G. Khalil, A. M. El Hassan, E. E. Zijlstra et al., “Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan,” The Lancet, vol. 356, no. 9241, pp. 1565–1569, 2000. View at Google Scholar · View at Scopus
  17. A. E. Harith, A. H. J. Kolk, P. A. Kager et al., “Evaluation of a newly developed direct agglutination test (DAT) for serodiagnosis and sero-epidemiological studies of visceral leishmaniasis: comparison with IFAT and ELISA,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 81, no. 4, pp. 603–606, 1987. View at Google Scholar · View at Scopus
  18. H. W. Ghalib, M. R. Piuvezam, Y. A. W. Skeiky et al., “Interleukin 10 production correlates with pathology in human Leishmania donovani infections,” Journal of Clinical Investigation, vol. 92, no. 1, pp. 324–329, 1993. View at Google Scholar · View at Scopus
  19. S. Nylén and D. Sacks, “Interleukin-10 and the pathogenesisof human visceral leishmaniasis,” Trends in Immunology, vol. 28, pp. 378–382, 2007. View at Publisher · View at Google Scholar
  20. S. Saha, S. Mondal, R. Ravindran et al., “IL-10- and TGF-β-mediated susceptibility in kala-azar and post-kala-azar dermal leishmaniasis: the significance of amphotericin B in the control of Leishmania donovani infection in India,” Journal of Immunology, vol. 179, no. 8, pp. 5592–5603, 2007. View at Google Scholar · View at Scopus
  21. A. Ismail, Immune responses and immunopathology of post kala-azar dermal Leishmaniasis [Ph.D. thesis], University of Copenhagen, Copenhagen, Denmark, 1999.
  22. E. E. Zijlstra, A. M. Musa, E. A. G. Khalil, I. M. El Hassan, and A. M. El Hassan, “Post-kala-azar dermal leishmaniasis,” The Lancet Infectious Diseases, vol. 3, no. 2, pp. 87–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Ismail, E. A. G. Khalil, A. M. Musa et al., “The pathogenesis of post kala-azar dermal leishmaniasis from the field to the molecule: does ultraviolet light (UVB) radiation play a role?” Medical Hypotheses, vol. 66, no. 5, pp. 993–999, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Gasim, A. M. El Hassan, E. A. G. Khalil et al., “High levels of plasma IL-10 and expression of IL-10 by keratinocytes during visceral leishmaniasis predict subsequent development of post-kala-azar dermal leishmaniasis,” Clinical and Experimental Immunology, vol. 111, pp. 64–69, 1998, Erratum in: Clinical and Experimental Immunology, vol. 112, pp. 574, 1998. View at Google Scholar
  25. S. Gasim, T. G. Theander, and A. M. El Hassan, “High levels of C-reactive protein in the peripheral blood during visceral leishmaniasis predict subsequent development of post kala-azar dermal leishmaniasis,” Acta Tropica, vol. 75, no. 1, pp. 35–38, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. A. A. Kamil, E. A. G. Khalil, A. M. Musa et al., “Alum-precipitated autoclaved Leishmania major plus bacille Calmette-Guérrin, a candidate vaccine for visceral leishmaniasis: safety, skin-delayed type hypersensitivity response and dose finding in healthy volunteers,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 97, no. 3, pp. 365–368, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Musa, E. A. G. Khalil, F. A. E. Mahgoub et al., “Immunochemotherapy of persistent post-kala-azar dermal leishmaniasis: a novel approach to treatment,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, no. 1, pp. 58–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. M. El Hassan and E. A. G. Khalil, “Post-kala-azar dermal leishmaniasis: does it play a role in the transmission of Leishmania donovani in the Sudan?” Tropical Medicine and International Health, vol. 6, no. 9, pp. 743–744, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. M. Musa, E. A. G. Khalil, M. A. Raheem et al., “The natural history of Sudanese post-kala-azar dermal leishmaniasis: clinical, immunological and prognostic features,” Annals of Tropical Medicine and Parasitology, vol. 96, no. 8, pp. 765–772, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. A. M. Musa, E. A. G. Khalil, F. A. Mahgoub, A. M. Y. Elkadaru, A. M. El Hassan, and S. Hamad, “Efficacy of liposomal amphotericin B (AmBisome) in the treatment of persistent post-kala-azar dermal leishmaniasis (PKDL),” Annals of Tropical Medicine and Parasitology, vol. 99, no. 6, pp. 563–569, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. M. Musa, E. A. G. Khalil, A. Ismail et al., “Safety, immunogenicity and possible efficacy of immunochemotherapy of persistent post kala-azar dermal leishmaniasis (PKDL),” Sudanese Journal of Dermatology, vol. 3, pp. 62–72, 2005. View at Google Scholar
  32. S. A. Shelburne III, R. J. Hamill, M. C. Rodriguez-Barradas et al., “Immune reconstitution inflammatory syndrome: emergence of a unique syndrome during highly active antiretroviral therapy,” Medicine, vol. 81, no. 3, pp. 213–227, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. M. A. French, “Disorders of immune reconstitution in patients with HIV infection responding to antiretroviral therapy,” Current HIV/AIDS Reports, vol. 4, no. 1, pp. 16–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Bicanic, G. Meintjes, K. Rebe et al., “Immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis: a prospective study,” Journal of Acquired Immune Deficiency Syndromes, vol. 51, no. 2, pp. 130–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. H. Elliott, K. Vohith, S. Saramony et al., “Immunopathogenesis and diagnosis of tuberculosis and tuberculosis- associated immune reconstitution inflammatory syndrome during early antiretroviral therapy,” Journal of Infectious Diseases, vol. 200, no. 11, pp. 1736–1745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. W. T. Elston and H. Thaker, “Immune reconstitution inflammatory syndrome,” International Journal of STD and AIDS, vol. 20, no. 4, pp. 221–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. A. French, “Immune reconstitution inflammatory syndrome: a reappraisal,” Clinical Infectious Diseases, vol. 48, no. 1, pp. 101–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. H. van Tieu, J. Ananworanich, A. Avihingsanon et al., “Immunologic markers as predictors of tuberculosis-associated immune reconstitution inflammatory syndrome in HIV and tuberculosis coinfected persons in thailand,” AIDS Research and Human Retroviruses, vol. 25, no. 11, pp. 1083–1089, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. A. French, N. Lenzo, M. John et al., “Immune restoration disease after the treatment of imrrmnodeficient THIV-infected patients with highly active antiretroviral therapy,” HIV Medicine, vol. 1, no. 2, pp. 107–115, 2000. View at Google Scholar · View at Scopus
  40. S. A. Shelburne, M. Montes, and R. J. Hamill, “Immune reconstitution inflammatory syndrome: more answers, more questions,” Journal of Antimicrobial Chemotherapy, vol. 57, no. 2, pp. 167–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. E. H. Amerson and T. A. Maurer, “Immune reconstitution inflammatory syndrome and tropical dermatoses,” Dermatologic Clinics, vol. 29, no. 1, pp. 39–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Blanche, B. Gombert, O. Rivoal, S. Abad, D. Salmon, and A. Brezin, “Uveitis due to Leishmania major as part of HAART-induced immune restitution syndrome in a patient with AIDS,” Clinical Infectious Diseases, vol. 34, no. 9, pp. 1279–1280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. H. P. Mutimer, Y. Akatsuka, T. Manley et al., “Association between immune recovery uveitis and a diverse intraocular cytomegalovirus-specific cytotoxic T cell response,” Journal of Infectious Diseases, vol. 186, no. 5, pp. 701–705, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. R. F. Miller, P. G. Isaacson, M. Hall-Craggs et al., “Cerebral CD8+ lymphocytosis in HIV-1 infected patients with immune restoration induced by HAART,” Acta Neuropathologica, vol. 108, no. 1, pp. 17–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Gray, C. Bazille, H. Adle-Biassette, J. Mikol, A. Moulignier, and F. Scaravilli, “Central nervous system immune reconstitution disease in acquired immunodeficiency syndrome patients receiving highly active antiretroviral treatment,” Journal of NeuroVirology, vol. 11, supplement 3, pp. 16–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. O. Lortholary, A. Fontanet, N. Mémain, A. Martin, K. Sitbon, and F. Dromer, “Incidence and risk factors of immune reconstitution inflammatory syndrome complicating HIV-associated cryptococcosis in France,” AIDS, vol. 19, no. 10, pp. 1043–1049, 2005. View at Google Scholar · View at Scopus
  47. P. Phillips, S. Bonner, N. Gataric et al., “Nontuberculous mycobacterial immune reconstitution syndrome in HIV-infected patients: spectrum of disease and long-term folow-up,” Clinical Infectious Diseases, vol. 41, no. 10, pp. 1483–1497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Breton, H. Adle-Biassette, A. Therby et al., “Immune reconstitution inflammatory syndrome in HIV-infected patients with disseminated histoplasmosis,” AIDS, vol. 20, no. 1, pp. 119–121, 2006. View at Google Scholar · View at Scopus
  49. M. D. Batista, A. M. Porro, S. M. Maeda et al., “Leprosy reversal reaction as immune reconstitution inflammatory syndrome in patients with AIDS,” Clinical Infectious Diseases, vol. 46, no. 6, pp. e56–e60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. D. B. A. Tan, Y. K. Yong, H. Y. Tan et al., “Immunological profiles of immune restoration disease presenting as mycobacterial lymphadenitis and cryptococcal meningitis,” HIV Medicine, vol. 9, no. 5, pp. 307–316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Tamburini, D. Grimaldi, J. D. Chiche, F. Bricaire, and P. Bossi, “Cytokine pattern in Kaposi's sarcoma associated with immune restoration disease in HIV and tuberculosis co-infected patients,” AIDS, vol. 21, no. 14, pp. 1980–1983, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. J. F. Morlese, C. M. Orkin, R. Abbas et al., “Plasma IL-6 as a marker of mycobacterial immune restoration disease in HIV-1 infection,” AIDS, vol. 17, no. 9, pp. 1411–1413, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Seddiki, S. C. Sasson, B. Santner-Nanan et al., “Proliferation of weakly suppressive regulatory CD4+ T cells is associated with over-active CD4+ T-cell responses in HIV-positive patients with mycobacterial immune restoration disease,” European Journal of Immunology, vol. 39, no. 2, pp. 391–403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Y. Sun and N. Singh, “Immune reconstitution inflammatory syndrome in non-HIV immunocompromised patients,” Current Opinion in Infectious Diseases, vol. 22, no. 4, pp. 394–402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. C. M. Worsley, M. S. Suchard, W. S. Stevens, A. van Rie, and D. M. Murdoch, “Multi-analyte profiling of ten cytokines in South African HIV-infected patients with Immune Reconstitution Inflammatory Syndrome (IRIS),” AIDS Research and Therapy, vol. 7, article 36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Puthanakit, P. Oberdorfer, S. Punjaisee, P. Wannarit, T. Sirisanthana, and V. Sirisanthana, “Immune reconstitution syndrome due to bacillus Calmette-Guérin after initiation of antiretroviral therapy in children with HIV infection,” Clinical Infectious Diseases, vol. 41, no. 7, pp. 1049–1052, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Matsuzaki and M. Umemura, “Interleukin-17 as an effector molecule of innate and acquired immunity against infections,” Microbiology and Immunology, vol. 51, no. 12, pp. 1139–1147, 2007. View at Google Scholar · View at Scopus
  58. T. J. Scriba, B. Kalsdorf, D. A. Abrahams et al., “Distinct, specific IL-17- and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response,” Journal of Immunology, vol. 180, no. 3, pp. 1962–1970, 2008. View at Google Scholar · View at Scopus
  59. A. R. Tappuni, “Immune reconstitution inflammatory syndrome,” Advances in Dental Research, vol. 23, no. 1, pp. 90–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. S. D. Lawn, L. G. Bekker, and R. F. Miller, “Immune reconstitution disease associated with mycobacterial infections in HIV-infected individuals receiving antiretrovirals,” The Lancet Infectious Diseases, vol. 5, no. 6, pp. 361–373, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. L. R. V. Antonelli, Y. Mahnke, J. N. Hodge et al., “Elevated frequencies of highly activated CD4+ T cells in HIV+ patients developing immune reconstitution inflammatory syndrome,” Blood, vol. 116, no. 19, pp. 3818–3827, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Tadesse and Z. Hurissa, “Leishmaniasis (PKDL) as a case of immune reconstitution inflammatory syndrome (IRIS) in HIV-positive patient after initiation of anti-retroviral therapy (ART),” Ethiopian Medical Journal, vol. 47, no. 1, pp. 77–79, 2009. View at Google Scholar · View at Scopus
  63. S. Antinori, E. Longhi, G. Bestetti et al., “Post-kala-azar dermal leishmaniasis as an immune reconstitution inflammatory syndrome in a patient with acquired immune deficiency syndrome,” British Journal of Dermatology, vol. 157, no. 5, pp. 1032–1036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. E. A. G. Khalil, N. B. Ayed, A. M. Musa et al., “Dichotomy of protective cellular immune responses to human visceral leishmaniasis,” Clinical and Experimental Immunology, vol. 140, no. 2, pp. 349–353, 2005. View at Publisher · View at Google Scholar · View at Scopus