Table of Contents Author Guidelines Submit a Manuscript
Journal of Tropical Medicine
Volume 2014, Article ID 170859, 8 pages
http://dx.doi.org/10.1155/2014/170859
Research Article

Concomitant Infection with Leishmania donovani and L. major in Single Ulcers of Cutaneous Leishmaniasis Patients from Sudan

1Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10-35020 Legnaro (PD), Italy
2Department of Public Health and Comparative Pathology, University of Padua, Viale dell'Università, 16-35030 Legnaro, Italy
3Tropical Medicine Research Institute, National Centre for Research, P.O. Box 1304, Khartoum, Sudan
4Institute of Endemic Diseases, University of Khartoum, Medical Campus, Qasr Avenue, P.O. Box 45235, 11111 Khartoum, Sudan

Received 28 October 2013; Accepted 29 January 2014; Published 12 March 2014

Academic Editor: Lukasz Kedzierski

Copyright © 2014 A. M. Babiker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Magill, “Epidemiology of the Leishmaniases,” Dermatologic Clinics, vol. 13, no. 3, pp. 505–523, 1995. View at Google Scholar · View at Scopus
  2. B. L. Herwaldt, “Laboratory-acquired parasitic infections from accidental exposures,” Clinical Microbiology Reviews, vol. 14, no. 4, pp. 659–688, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. R. W. Ashford, “Leishmaniasis reservoirs and their significance in control,” Clinics in Dermatology, vol. 14, no. 5, pp. 523–532, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Desjeux, “Leishmaniasis: public health aspects and control,” Clinics in Dermatology, vol. 14, no. 5, pp. 417–423, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Desjeux, “Leishmaniasis: current situation and new perspectives,” Comparative Immunology, Microbiology and Infectious Diseases, vol. 27, no. 5, pp. 305–318, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Alvar, P. Aparicio, A. Aseffa et al., “The relationship between Leishmaniasis and AIDS: the second 10 years,” Clinical Microbiology Reviews, vol. 21, no. 2, pp. 334–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Desjeux, “The increase in risk factors for Leishmaniasis worldwide,” Transactions of the Royal Society of Tropical Medicine & Hygiene, vol. 95, no. 3, pp. 239–243, 2001. View at Google Scholar · View at Scopus
  8. P. J. Guerin, P. Olliaro, S. Sundar et al., “Visceral Leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda,” The Lancet Infectious Diseases, vol. 2, no. 8, pp. 494–501, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. H. W. Murray, J. D. Berman, C. R. Davies, and N. G. Saravia, “Advances in Leishmaniasis,” The Lancet, vol. 366, no. 9496, pp. 1561–1577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. E. E. Zijlstra and A. M. el-Hassan, “Leishmaniasis in Sudan. Visceral Leishmaniasis,” Transactions of the Royal Society of Tropical Medicine & Hygiene, vol. 95, supplement 1, pp. S27–S58, 2001. View at Google Scholar · View at Scopus
  11. O. F. Osman, P. A. Kager, and L. Oskam, “Leishmaniasis in the Sudan: a literature review with emphasis on clinical aspects,” Tropical Medicine & International Health, vol. 5, no. 8, pp. 553–562, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. E. A. G. Khalil, A. M. Musa, S. H. H. Elgawi et al., “Revival of a focus of visceral Leishmaniasis in central Sudan,” Annals of Tropical Medicine and Parasitology, vol. 102, no. 1, pp. 79–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. H. el-Safi and W. Peters, “Studies on the Leishmaniases in the Sudan—1. Epidemic of cutaneous Leishmaniasis in Khartoum,” Transactions of the Royal Society of Tropical Medicine & Hygiene, vol. 85, no. 1, pp. 44–47, 1991. View at Google Scholar · View at Scopus
  14. E. M. Elamin, I. Guizani, S. Guerbouj et al., “Identification of Leishmania donovani as a cause of cutaneous Leishmaniasis in Sudan,” Transactions of the Royal Society of Tropical Medicine & Hygiene, vol. 102, no. 1, pp. 54–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. el-Hassan, E. E. Zijlstra, S. E. Meredith, H. W. Ghalib, and A. Ismail, “Identification of Leishmania donovani using a polymerase chain reaction in patient and animal material obtained from an area of endemic kala-azar in the Sudan,” Acta Tropica, vol. 55, no. 1-2, pp. 87–90, 1993. View at Publisher · View at Google Scholar
  16. D. A. Elnaiem, R. D. Ward, H. K. Hassan, M. A. Miles, and I. A. Frame, “Infection rates of Leishmania donovani in Phlebotomus orientalis from a focus of visceral Leishmaniasis in eastern Sudan,” Annals of Tropical Medicine and Parasitology, vol. 92, no. 2, pp. 229–232, 1998. View at Google Scholar · View at Scopus
  17. A. M. el-Hassan, E. E. Zijlstra, A. Ismael, and H. W. Ghalib, “Recent observations on the epidemiology of kala-azar in the eastern and central states of the Sudan,” Tropical and Geographical Medicine, vol. 47, no. 4, pp. 151–156, 1995. View at Google Scholar · View at Scopus
  18. E. A. G. Khalil, E. E. Zijlstra, P. A. Kager, and A. M. el Hassan, “Epidemiology and clinical manifestations of Leishmania donovani infection in two villages in an endemic area in eastern Sudan,” Tropical Medicine and International Health, vol. 7, no. 1, pp. 35–44, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. D. A. Elnaiem, M. M. Hassan, R. Maingon et al., “The Egyptian mongoose, Herpestes ichneumon, is a possible reservoir host of visceral Leishmaniasis in eastern Sudan,” Parasitology, vol. 122, no. 5, pp. 531–536, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Dereure, S. H. el-Safi, B. Bucheton et al., “Visceral Leishmaniasis in eastern Sudan: parasite identification in humans and dogs; host-parasite relationships,” Microbes and Infection, vol. 5, no. 12, pp. 1103–1108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Hassan, F. M. A. Elraba'a, R. D. Ward, R. D. C. Maingon, and D. A. Elnaiem, “Detection of high rates of in-village transmission of Leishmania donovani in eastern Sudan,” Acta Tropica, vol. 92, no. 1, pp. 77–82, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. WHO, “Control of the Leishmaniasis,” Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniasis, WHO, Geneva, Switzerland, 2010. View at Google Scholar
  23. E. E. Zijlstra, A. M. Musa, E. A. G. Khalil, I. M. el Hassan, and A. M. el-Hassan, “Post-kala-azar dermal Leishmaniasis,” The Lancet Infectious Diseases, vol. 3, no. 2, pp. 87–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. E. E. Zijlstra, A. M. el-Hassan, and A. Ismael, “Endemic kala-azar in eastern Sudan: post-kala-azar dermal Leishmaniasis,” American Journal of Tropical Medicine and Hygiene, vol. 52, no. 4, pp. 299–305, 1995. View at Google Scholar · View at Scopus
  25. A. M. el Hassan and E. A. G. Khalil, “Post-kala-azar dermal Leishmaniasis: does it play a role in the transmission of Leishmania donovani in the Sudan?” Tropical Medicine and International Health, vol. 6, no. 9, pp. 743–744, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. el-Hassan, S. E. Meredith, H. I. Yagi et al., “Sudanese mucosal leishmaniasis: epidemiology, clinical features, diagnosis, immune responses and treatment,” Transactions of the Royal Society of Tropical Medicine & Hygiene, vol. 89, no. 6, pp. 647–652, 1995. View at Publisher · View at Google Scholar
  27. A. M. el-Hassan and E. E. Zijlstra, “Leishmaniasis in Sudan—2. Mucosal Leishmaniasis,” Transactions of the Royal Society of Tropical Medicine & Hygiene, vol. 95, supplement 1, pp. S19–S26, 2001. View at Publisher · View at Google Scholar
  28. M. E. Ibrahim, A. J. Smyth, M. H. Alid, D. C. Barker, and A. Kharazmi, “The polymerase chain reaction can reveal the occurrence of naturally mixed infections with Leishmania parasites,” Acta Tropica, vol. 57, no. 4, pp. 327–332, 1994. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Maniatis, E. F. Fritsch, and K. J. Sambrook, Purification of Nucleic Acids: Molecular Cloning, Cold Spring Harbor Laboratory, New York, NY, USA, 13th edition, 1986.
  30. N. O. el Tai, O. F. Osman, M. el Fari, W. Presber, and G. Schönian, “Genetic heterogeneity of ribosomal internal transcribed spacer in clinical samples of Leishmania donovani spotted on filter paper as revealed by single-strand conformation polymorphisms and sequencing,” Transactions of the Royal Society of Tropical Medicine & Hygiene, vol. 94, no. 5, pp. 575–579, 2000. View at Google Scholar · View at Scopus
  31. G. Wortmann, L. Hochberg, H.-H. Houng et al., “Rapid identification of Leishmania complexes by a real-time PCR assay,” American Journal of Tropical Medicine and Hygiene, vol. 73, no. 6, pp. 999–1004, 2005. View at Google Scholar · View at Scopus
  32. A. H. Sharief, E.-T. A. G. Khalil, D. C. Barker, S. A. Omer, H. S. Abdalla, and M. E. Ibrahim, “Simple and direct characterization of Leishmania donovani isolates based on cytochrome oxidase II gene sequences,” The Open Tropical Medicine Journal, vol. 4, no. 1, pp. 1–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. N. O. el Tai, M. el Fari, I. Mauricio et al., “Leishmania donovani: intraspecific polymorphisms of Sudanese isolates revealed by PCR-based analyses and DNA sequencing,” Experimental Parasitology, vol. 97, no. 1, pp. 35–44, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. M. el-Hassan and E. E. Zijlstra, “Leishmaniasis in Sudan—1. Cutaneous Leishmaniasis,” Transactions of the Royal Society of Tropical Medicine & Hygiene, vol. 95, supplement 1, pp. S1–S17, 2001. View at Google Scholar · View at Scopus
  36. A. A. Belli, M. A. Miles, and J. M. Kelly, “A putative Leishmania panamensis/Leishmania braziliensis hybrid is a causative agent of human cutaneous Leishmaniasis in Nicaragua,” Parasitology, vol. 109, no. 4, pp. 435–442, 1994. View at Google Scholar · View at Scopus
  37. S. Shirian, A. Oryan, G. R. Hatam, and Y. Daneshbod, “Mixed mucosal Leishmaniasis infection caused by Leishmania tropica and Leishmania major,” Journal of Clinical Microbiology, vol. 50, no. 11, pp. 3805–3808, 2012. View at Publisher · View at Google Scholar
  38. L. J. al-Diwany, N. A. al-Awkati, M. Atia, and M. B. Rassam, “Concomitant natural infection with L. donovani and L. major: a case report from Iraq,” Sozial-und Praventivmedizin, vol. 40, no. 4, pp. 234–238, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. B. Mebrahtu, P. G. Lawyer, L. D. Hendricks et al., “Concurrent infection with Leishmania donovani and Leishmania major in a Kenyan patient: clinical description and parasite characterization,” American Journal of Tropical Medicine and Hygiene, vol. 45, no. 3, pp. 290–296, 1991. View at Google Scholar · View at Scopus
  40. C. Ravel, S. Cortes, F. Pratlong, F. Morio, J.-P. Dedet, and L. Campino, “First report of genetic hybrids between two very divergent Leishmania species: Leishmania infantum and Leishmania major,” International Journal for Parasitology, vol. 36, no. 13, pp. 1383–1388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Martinez, S. Mollinedo, M. Torrez, M. Muñoz, and A.-L. Bañuls, “Co-infection by Leishmania amazonensis and L. infantum/L. chagasi in a case of diffuse cutaneous Leishmaniasis in Bolivia,” Transactions of the Royal Society of Tropical Medicine & Hygiene, vol. 96, no. 5, pp. 529–532, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. R. S. Pacheco, G. Grimaldi Júnior, and C. M. Morel, “Inhibition of growth of Leishmania mexicana mexicana by Leishmania mexicana amazonensis during “in vitro” co-cultivation,” Memorias do Instituto Oswaldo Cruz, vol. 82, no. 4, pp. 537–542, 1987. View at Google Scholar · View at Scopus
  43. N. M. Khalid, M. A. Aboud, F. M. Alrabba, D. E. Elnaiem, and F. Tripet, “Evidence for genetic differentiation at the microgeographic scale in Phlebotomus papatasi populations from Sudan,” Parasites & Vectors, vol. 5, article 249, 2012. View at Publisher · View at Google Scholar
  44. A. Oryan, S. Shirian, M. R. Tabandeh, G. R. Hatam, G. Randau, and Y. Daneshbod, “Genetic diversity of Leishmania major strains isolated from different clinical forms of cutaneous Leishmaniasis in southern Iran based on minicircle kDNA,” Infection, Genetics and Evolution, vol. 19, pp. 226–231, 2013. View at Publisher · View at Google Scholar
  45. J. Myskova, M. Svobodova, S. M. Beverley, and P. Volf, “A lipophosphoglycan-independent development of Leishmania in permissive sand flies,” Microbes and Infection, vol. 9, no. 3, pp. 317–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. P. F. P. Pimenta, E. M. B. Saraiva, E. Rowton et al., “Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 19, pp. 9155–9159, 1994. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Volf, I. Benkova, J. Myskova, J. Sadlova, L. Campino, and C. Ravel, “Increased transmission potential of Leishmania major/Leishmania infantum hybrids,” International Journal for Parasitology, vol. 37, no. 6, pp. 589–593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. B. Jamjoom, R. W. Ashford, P. A. Bates et al., “Leishmania donovani is the only cause of visceral Leishmaniasis in east Africa; previous descriptions of L. infantum and “L. archibaldi” from this region are a consequence of convergent evolution in the isoenzyme data,” Parasitology, vol. 129, no. 4, pp. 399–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Schönian, I. Mauricio, and E. Cupolillo, “Is it time to revise the nomenclature of Leishmania?” Trends in Parasitology, vol. 26, no. 10, pp. 466–469, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. G. van der Auwera, J. Fraga, A. M. Montalvo, and J.-C. Dujardin, “Leishmania taxonomy up for promotion?” Trends in Parasitology, vol. 27, no. 2, pp. 49–50, 2011. View at Publisher · View at Google Scholar · View at Scopus