Table of Contents Author Guidelines Submit a Manuscript
Journal of Tropical Medicine
Volume 2018, Article ID 7659730, 9 pages
https://doi.org/10.1155/2018/7659730
Research Article

Lateral Flow Loop-Mediated Isothermal Amplification Test with Stem Primers: Detection of Cryptosporidium Species in Kenyan Children Presenting with Diarrhea

1Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-0200, Nairobi, Kenya
2Centre for Microbiology Research, Kenya Medical Research Institute, P.O. Box 19464-00202, Nairobi, Kenya
3School of Health Sciences, Meru University of Science and Technology, P.O. Box 972-60200, Meru, Kenya
4School of Health Professions, Murdoch University, Mandurah Campus, Education Drive, Mandurah, WA 6210, Australia

Correspondence should be addressed to Timothy S. Mamba; moc.liamg@abmamsyhtomit

Received 17 November 2017; Accepted 28 January 2018; Published 26 February 2018

Academic Editor: Carlos E. P. Corbett

Copyright © 2018 Timothy S. Mamba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Karanis, O. Thekisoe, K. Kiouptsi, J. Ongerth, I. Igarashi, and N. Inoue, “Development and preliminary evaluation of a loop-mediated isothermal amplification procedure for sensitive detection of Cryptosporidium oocysts in fecal and water samples,” Applied and Environmental Microbiology, vol. 73, no. 17, pp. 5660–5662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Koloren, I. Sotiriadou, and P. Karanis, “Investigations and comparative detection of Cryptosporidium species by microscopy, nested PCR and LAMP in water supplies of ordu, middle Black Sea, Turkey,” Annals of Tropical Medicine and Parasitology, vol. 105, no. 8, pp. 607–615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Snelling, L. Xiao, G. Ortega-Perres, J. Lowery, E. Moore, R. Rao et al., “Cryptosporidiosis in developing countries,” J Infect Dev Ctries, vol. 1, no. 3, pp. 242–256, 2007. View at Google Scholar
  4. D.-A. T. Shirley, S. N. Moonah, and K. L. Kotloff, “Burden of disease from cryptosporidiosis,” Current Opinion in Infectious Diseases, vol. 25, no. 5, pp. 555–563, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. C. K. Mbae, D. J. Nokes, E. Mulinge, J. Nyambura, A. Waruru, and S. Kariuki, “Intestinal parasitic infections in children presenting with diarrhoea in outpatient and inpatient settings in an informal settlement of Nairobi, Kenya,” BMC Infectious Diseases, vol. 13, no. 1, article 243, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Mbae, E. Mulinge, A. Waruru, B. Ngugi, J. Wainaina, and S. Kariuki, “Genetic Diversity of Cryptosporidium in Children in an Urban Informal Settlement of Nairobi, Kenya,” PLoS ONE, vol. 10, no. 12, Article ID e0142055, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. K. L. Kotloff, W. C. Blackwelder, D. Nasrin et al., “The Global Enteric Multicenter Study (GEMS) of diarrheal disease in infants and young children in developing countries: epidemiologic and clinical methods of the case/control study,” Clinical Infectious Diseases, vol. 55, supplement 4, pp. S232–S245, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. H.-I. Cheun, K. Kim, S. Yoon et al., “Cryptosporidium hominis infection diagnosed by real-time PCR-RFLP,” The Korean Journal of Parasitology, vol. 51, no. 3, pp. 353–355, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Samba, K. Muhsen, D. Nasrin, W. Blackwelder, Y. Wu, H. Tamer et al., “The burden of Cryptosporidium diarrheal disease among children < 24 months of age in moderate/high mortality rate regions of Sub-Saharan Africa and South Asia. Utilizing data from the Global enteric Multicenter Study (GEMS),” Plos Negl Trop Dis, vol. 10, no. 5, Article ID e0004729, 2016. View at Google Scholar
  10. J. M. Muchiri, L. Ascolillo, M. Mugambi et al., “Seasonality of Cryptosporidium oocyst detection in surface waters of Meru, Kenya as determined by two isolation methods followed by PCR,” Journal of Water and Health, vol. 7, no. 1, pp. 67–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Adamu, B. Petros, G. Zhang et al., “Distribution and Clinical Manifestations of Cryptosporidium Species and Subtypes in HIV/AIDS Patients in Ethiopia,” PLOS Neglected Tropical Diseases, vol. 8, no. 4, Article ID e2831, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Gatei, C. N. Wamae, C. Mbae et al., “Cryptosporidiosis: prevalence, genotype analysis, and symptoms associated with infections in children in Kenya,” The American Journal of Tropical Medicine and Hygiene, vol. 75, no. 1, pp. 78–82, 2006. View at Google Scholar · View at Scopus
  13. P. B. Pavlinac, G. C. John-Stewart, J. M. Naulikha et al., “High-risk enteric pathogens associated with HIV infection and HIV exposure in Kenyan children with acute diarrhea,” AIDS, vol. 28, no. 15, pp. 2287–2296, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. M. W. LeChevallier, G. D. Di Giovanni, J. L. Clancy et al., “Comparison of method 1623 and cell culture-PCR for detection of Cryptosporidium spp. in source waters,” Applied and Environmental Microbiology, vol. 69, no. 2, pp. 971–979, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Bakheit, D. Torra, L. A. Palomino et al., “Sensitive and specific detection of Cryptosporidium species in PCR-negative samples by loop-mediated isothermal DNA amplification and confirmation of generated LAMP products by sequencing,” Veterinary Parasitology, vol. 158, no. 1-2, pp. 11–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. A. Helmy, J. Krücken, K. Nöckler, G. Von Samson-Himmelstjerna, and K.-H. Zessin, “Comparison between two commercially available serological tests and polymerase chain reaction in the diagnosis of Cryptosporidium in animals and diarrhoeic children,” Parasitology Research, vol. 113, no. 1, pp. 211–216, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Bouzid, K. Elwin, J. L. Nader, R. M. Chalmers, P. R. Hunter, and K. M. Tyler, “Novel real-time PCR assays for the specific detection of human infective Cryptosporidium species,” Virulence, vol. 7, no. 4, pp. 395–399, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. M. L. Power, M. Holley, U. M. Ryan, P. Worden, and M. R. Gillings, “Identification and differentiation of Cryptosporidium species by capillary electrophoresis single-strand conformation polymorphism,” FEMS Microbiology Letters, vol. 314, no. 1, pp. 34–41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. L. S. Waldron, B. C. Ferrari, M. R. Gillings, and M. L. Power, “Terminal restriction fragment length polymorphism for identification of cryptosporidium species in human feces,” Applied and Environmental Microbiology, vol. 75, no. 1, pp. 108–112, 2008. View at Publisher · View at Google Scholar
  20. T. Notomi, Y. Mori, N. Tomita, and H. Kanda, “Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects,” Journal of Microbiology, vol. 53, no. 1, pp. 1–5, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. K. Njiru, A. S. J. Mikosza, T. Armstrong, J. C. Enyaru, J. M. Ndung'u, and A. R. C. Thompson, “Loop-mediated isothermal amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense,” PLOS Neglected Tropical Diseases, vol. 2, no. 1, article e147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Mori, K. Nagamine, N. Tomita, and T. Notomi, “Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation,” Biochemical and Biophysical Research Communications, vol. 289, no. 1, pp. 150–154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Parida, S. Sannarangaiah, P. K. Dash, P. V. L. Rao, and K. Morita, “Loop mediated isothermal amplification (LAMP): A new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases,” Reviews in Medical Virology, vol. 18, no. 6, pp. 407–421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. N. Mohon, R. Elahi, W. A. Khan, R. Haque, D. J. Sullivan, and M. S. Alam, “A new visually improved and sensitive loop mediated isothermal amplification (LAMP) for diagnosis of symptomatic falciparum malaria,” Acta Tropica, vol. 134, no. 1, pp. 52–57, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. E. A. Shiraho, A. L. Eric, I. N. Mwangi et al., “Development of a Loop Mediated Isothermal Amplification for Diagnosis of Ascaris lumbricoides in Fecal Samples,” Journal of Parasitology Research, vol. 2016, Article ID 7376207, 2016. View at Publisher · View at Google Scholar · View at Scopus
  26. R. M. Mugambi, E. L. Agola, I. N. Mwangi, J. Kinyua, E. A. Shiraho, and G. M. Mkoji, “Development and evaluation of a Loop Mediated Isothermal Amplification (LAMP) technique for the detection of hookworm (Necator americanus) infection in fecal samples,” Parasites & Vectors, vol. 8, no. 1, article no. 1183, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. M. J. D. Esmatabadi, A. Bozorgmehr, H. M. Zadeh et al., “Techniques for evaluation of LAMP amplicons and their applications in molecular biology,” Asian Pacific Journal of Cancer Prevention, vol. 16, no. 17, pp. 7409–7414, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Kiatpathomchai, W. Jaroenram, N. Arunrut, S. Jitrapakdee, and T. W. Flegel, “Shrimp Taura syndrome virus detection by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick,” Journal of Virological Methods, vol. 153, no. 2, pp. 214–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. K. Njiru, “Rapid and sensitive detection of human African Trypanosomiasis by loop-mediated isothermal amplification combined with a lateral-flow dipstick,” DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, vol. 69, no. 2, pp. 205–209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Gandelman, R. Jackson, G. Kiddle, and L. Tisi, “Loop-mediated amplification accelerated by stem primers,” International Journal of Molecular Sciences, vol. 12, no. 12, pp. 9108–9124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Xiao, A. Singh, J. Limor, T. K. Graczyk, S. Gradus, and A. Lal, “Molecular characterization of Cryptosporidiumoocysts in samples of raw surface water and wastewater,” Applied and Environmental Microbiology, vol. 67, no. 3, pp. 1097–1101, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Notomi, H. Okayama, H. Masubuchi et al., “Loop-mediated isothermal amplification of DNA,” Nucleic Acids Research, vol. 28, no. 12, article E63, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. B. D. Cobb and J. M. Clarkson, “A simple procedure for optimising the polymerase chain reaction (PCR) using modified Taguchi methods,” Nucleic Acids Research, vol. 22, no. 18, pp. 3801–3805, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Xiao, C. Bern, J. Limor et al., “Identification of 5 types of Cryptosporidium parasites in children in Lima, Peru,” The Journal of Infectious Diseases, vol. 183, no. 3, pp. 492–497, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Nagamine, T. Hase, and T. Notomi, “Accelerated reaction by loop-mediated isothermal amplification using loop primers,” Molecular and Cellular Probes, vol. 16, no. 3, pp. 223–229, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Gallas-Lindemann, I. Sotiriadou, J. Plutzer, M. J. Noack, M. R. Mahmoudi, and P. Karanis, “Giardia and Cryptosporidium spp. dissemination during wastewater treatment and comparative detection via immunofluorescence assay (IFA), nested polymerase chain reaction (nested PCR) and loop mediated isothermal amplification (LAMP),” Acta Tropica, vol. 158, pp. 43–51, 2016. View at Publisher · View at Google Scholar · View at Scopus