Table of Contents Author Guidelines Submit a Manuscript
Journal of Thyroid Research
Volume 2011 (2011), Article ID 321030, 17 pages
http://dx.doi.org/10.4061/2011/321030
Review Article

Pleiotropic Effects of Thyroid Hormones: Learning from Hypothyroidism

1Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, 14080 Mexico City, DF, Mexico
2Department of Biochemistry, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, 14080 Mexico City, DF, Mexico
3Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, 14080 Mexico City, DF, Mexico

Received 29 January 2011; Revised 29 March 2011; Accepted 30 March 2011

Academic Editor: Juan Bernal

Copyright © 2011 Martha Franco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. E. Scheffler, Mitochondria, Whiley and Sons, New Jersey, NJ, USA, 2nd edition, 2008.
  2. G. Paradies and F. M. Ruggiero, “The influence of hypothyroidism on the transport of phosphate and on the lipid composition in rat-liver mitochondria,” Biochimica and Biophysica Acta, vol. 1070, no. 1, pp. 180–186, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Paradies, F. M. Ruggiero, G. Petrosillo, and E. Quagliariello, “Enhanced cytochrome oxidase activity and modification of lipids in heart mitochondria from hyperthyroid rats,” Biochimica et Biophysica Acta, vol. 1225, no. 2, pp. 165–170, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. S. G. Robles, M. Franco, C. Zazueta et al., “Thyroid hormone may induce changes in the concentration of the mitochondrial calcium uniporter,” Comparative Biochemistry and Physiology B, vol. 135, no. 1, pp. 177–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Schönfeld, M. R. Wiêckowski, and L. Wojtczak, “Thyroid hormone-induced expression of the ADP/ATP carrier and its effect on fatty acid-induced uncoupling of oxidative phosphorylation,” FEBS Letters, vol. 416, no. 1, pp. 19–22, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Mangiullo, A. Gnoni, F. Damiano et al., “3,5-diiodo-L-thyronine upregulates rat-liver mitochondrial FoF1-ATP synthase by GA-binding protein/nuclear respiratory factor-2,” Biochimica et Biophysica Acta, vol. 1797, no. 2, pp. 233–240, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. Kvetny, L. Wilms, P. L. Pedersen, and J. Larsen, “Subclinical hypothyroidism affects mitochondrial function,” Hormone and Metabolic Research, vol. 42, no. 5, pp. 324–327, 2010. View at Publisher · View at Google Scholar · View at PubMed
  8. G. M. Hatch, “Cardiolipin: biosynthesis, remodeling and trafficking in the heart and mammalian cells,” International Journal of Molecular Medicine, vol. 1, no. 1, pp. 33–41, 1998. View at Google Scholar · View at Scopus
  9. D. L. Pehowich, “Hypothyroid state and membrane fatty acid composition influence cardiac mitochondrial pyruvate oxidation,” Biochimica et Biophysica Acta, vol. 1235, no. 2, pp. 231–238, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Paradies, F. M. Ruggiero, G. Petrosillo, and E. Quagliariello, “Stimulation of carnitine acylcarnitine translocase activity in heart mitochondria from hyperthyroid rats,” Federation of European Biochemical Societies Letters, vol. 397, no. 2-3, pp. 260–262, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Paradies, F. M. Ruggiero, G. Petrosillo, and E. Quagliariello, “Alterations in carnitine-acylcarnitine translocase activity and in phospholipid composition in heart mitochondria from hypothyroid rats,” Biochimica et Biophysica Acta, vol. 1362, no. 2-3, pp. 193–200, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Beyer and M. Klingenberg, “ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by P nuclear magnetic resonance,” Biochemistry, vol. 24, no. 15, pp. 3821–3826, 1985. View at Google Scholar · View at Scopus
  13. A. P. Halestrap and C. Brenner, “The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death,” Current Medicinal Chemistry, vol. 10, no. 16, pp. 1507–1525, 2003. View at Google Scholar · View at Scopus
  14. N. Brustovetsky and M. Klingenberg, “Mitochondrial ADP/ATP carrier can be reversible converted into a large channel by Ca2+,” Biochemistry, vol. 35, no. 26, pp. 8483–8488, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. E. Chávez, R. Moreno-Sánchez, M. E. Torres-Márquez et al., “Modulation of matrix Ca2+ content by the ADP/ATP carrier in brown adipose tissue mitochondria. Influence of membrane lipid composition,” Journal of Bioenergetics and Biomembranes, vol. 28, no. 1, pp. 69–76, 1996. View at Google Scholar · View at Scopus
  16. G. K. Asimakis and L. A. Sordahl, “Effects of atractyloside and palmitoyl coenzyme A on calcium transport in cardiac mitochondria,” Archives of Biochemistry and Biophysics, vol. 179, no. 1, pp. 200–210, 1977. View at Google Scholar · View at Scopus
  17. E. Chávez, C. Zazueta, N. García, E. Martínez-Abundis, N. Pavón, and L. Hernández-Esquivel, “Titration of cardiolipin by either 10-N-nonyl acridine orange or acridine orange sensitizes the adenine nucleotide carrier to permeability transition,” Journal of Bioenergetics and Biomembranes, vol. 40, no. 2, pp. 77–84, 2008. View at Publisher · View at Google Scholar · View at PubMed
  18. E. Chávez, M. Franco, H. Reyes-Vivas, C. Zazueta, J. Ramírez, and R. Carrillo, “Hypothyroidism renders liver mitochondria resistant to the opening of membrane permeability transition pore,” Biochimica et Biophysica Acta, vol. 1407, no. 3, pp. 243–248, 1998. View at Publisher · View at Google Scholar
  19. C. Zazueta, M. Franco, F. Correa et al., “Hypothyroidism provides resistance to kidney mitochondria against the injury induced by renal ischemia-reperfusion,” Life Sciences, vol. 80, no. 14, pp. 1252–1258, 2007. View at Publisher · View at Google Scholar · View at PubMed
  20. C. Pantos, V. Malliopoulou, I. Mourouzis et al., “Propylthiouracil-induce hypothyroidism is associated with increased tolerance of the isolated rat heart to ischaemia-reperfusion,” Journal of Endocrinology, vol. 178, no. 3, pp. 427–435, 2003. View at Publisher · View at Google Scholar
  21. M. Masztalerz, Z. Wlodarczyk, J. Czuczejko, M. Slupski, and J. Kedziora, “Superoxide anion as a marker of ischemia-reperfusion injury of the transplanted kidney,” Transplantation Proceedings, vol. 38, no. 1, pp. 46–48, 2006. View at Publisher · View at Google Scholar · View at PubMed
  22. N. García, C. Zazueta, M. El-Hafidi et al., “Cyclosporin A inhibits UV-radiation-induced membrane damage but is unable to inhibit carboxyatractyloside-induced permeability transition,” Radiation research, vol. 172, no. 5, pp. 575–583, 2009. View at Publisher · View at Google Scholar · View at PubMed
  23. E. Doran and A. P. Halestrap, “Cytochrome c release from isolated rat liver mitochondria can occur independently of outer-membrane rupture: possible role of contact sites,” Biochemical Journal, vol. 348, no. 2, pp. 343–350, 2000. View at Publisher · View at Google Scholar
  24. N. Pavón, A. Aranda, N. García, L. Hernández-Esquivel, and E. Chávez, “In hyperthyroid rats octylguanidine protects the heart from reperfusion damage,” Endocrine, vol. 35, no. 6, pp. 158–165, 2009. View at Google Scholar
  25. E. Chávez, R. Moreno-Sánchez, C. Zazueta, H. Reyes-Vivas, and D. Arteaga, “Intramitochondrial K+ as activator of carboxyatractyloside-induced Ca2+ release,” Biochimica et Biophysica Acta, vol. 1070, no. 2, pp. 461–466, 1991. View at Publisher · View at Google Scholar
  26. P. Venditti, R. De Rosa, and S. Di Meo, “Effect of thyroid state on susceptibility to oxidants and swelling of mitochondria from rat tissues,” Free Radical Biology and Medicine, vol. 35, no. 5, pp. 485–494, 2003. View at Publisher · View at Google Scholar
  27. E. Fernández-Vizarra, J. A. Enriquez, A. Pérez-Martos, J. Montoya, and P. Fernández-Silva, “Mitochondrial gene expression is regulated at multiple levels and differentially in the heart and liver by thyroid hormones,” Current Genetics, vol. 54, no. 1, pp. 13–22, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. E. Yehuda-Shnaidman, B. Kalderon, N. Azazmeh, and J. Bar-Tana, “Gating of the mitochondrial permeability transition pore by thyroid hormone,” FASEB Journal, vol. 24, no. 1, pp. 93–104, 2010. View at Publisher · View at Google Scholar · View at PubMed
  29. E. Yehuda-Shnaidman, B. Kalderon, and J. Bar-Tana, “Modulation of mitochondrial transition pore components by thyroid hormone,” Endocrinology, vol. 146, no. 5, pp. 2462–2472, 2005. View at Publisher · View at Google Scholar · View at PubMed
  30. D. V. Cokkinos and C. Pantos, “Myocardial protection: a new holy grail of contemporary cardiology,” Hellenic Journal of Cardiology, vol. 46, no. 4, pp. 249–257, 2005. View at Google Scholar
  31. N. García, F. Correa, and E. Chávez, “On the role of the respiratory complex I on membrane permeability transition,” Journal of Bioenergetics and Biomembranes, vol. 37, no. 1, pp. 17–23, 2005. View at Publisher · View at Google Scholar · View at PubMed
  32. T. Munzel, T. Gori, R. M. Bruno, and S. Taddei, “Is oxidative stress a therapeutic target in cardiovascular disease?” European Heart Journal, vol. 31, no. 22, pp. 2741–2748, 2010. View at Google Scholar
  33. L. Zhang, J. R. Parrat, G. H. Beastall, N. J. Pyne, and B. L. Furman, “Streptozotocin diabetes protects against arrhthmias in isolated hearts: role of hypothyroidism,” European Journal of Pharmacology, vol. 245, no. 2-3, pp. 269–276, 2002. View at Google Scholar
  34. I. Bobadilla, M. Franco, D. Cruz, J. Zamora, S. G. Robles, and E. Chávez, “Hypothyroidism provides resistance to reperfusion injury following myocardium ischemia,” International Journal of Biochemistry and Cell Biology, vol. 33, no. 5, pp. 399–506, 2001. View at Publisher · View at Google Scholar
  35. G. Capasso, N. G. De Santo, and R. Kinne, “Thyroid hormones and renal transport: cellular and biochemical aspects,” Kidney International, vol. 32, no. 4, pp. 443–451, 1987. View at Google Scholar
  36. I. van Hoek and S. Daminet, “Interactions between thyroid and kidney function in pathological conditions of these organ systems: a review,” General and Comparative Endocrinology, vol. 160, no. 3, pp. 205–215, 2009. View at Publisher · View at Google Scholar · View at PubMed
  37. F. Vargas, J. M. Moreno, I. Rodríguez-Gómez et al., “Vascular and renal function in experimental thyroid disorders,” European Journal of Endocrinology, vol. 154, no. 2, pp. 197–212, 2006. View at Publisher · View at Google Scholar · View at PubMed
  38. M. Franco, N. A. Bobadilla, J. Suárez, E. Tapia, L. Sánchez, and J. Herrera-Acosta, “Participation of adenosine in the renal hemodynamic abnormalities of hypothyroidism,” American Journal of Physiology, vol. 270, no. 2, pp. F254–F262, 1996. View at Google Scholar
  39. D. M. Gillum, S. A. Falk, W. S. Hammond, and J. D. Conger, “Glomerular dynamics in the hypothyroid rat and the role of the renin-angiotensin system,” American Journal of Physiology, vol. 253, no. 1, part 2, pp. F170–F179, 1987. View at Google Scholar
  40. M. G. Collis, “The vasodilator role of adenosine,” Pharmacology and Therapeutics, vol. 41, no. 1-2, pp. 143–162, 1989. View at Google Scholar
  41. H. Osswald, “The role of adenosine in the regulation of glomerular filtration rate and renin secretion,” Trends in Pharmacological Sciences, vol. 5, no. 1, 1984. View at Google Scholar
  42. W. S. Spielman and C. I. Thompson, “A proposed role for adenosine in the regulation of renal hemodynamics and renin release,” American Journal of Physiology, vol. 242, no. 5, pp. F423–F435, 1982. View at Google Scholar
  43. D. Mazurkiewicz and D. Saggerson, “Changes in the activities of adenosine-metabolizing enzymes in six regions of the rat brain on chemical induction of hypothyroidism,” Biochemical Journal, vol. 261, no. 2, pp. 667–672, 1989. View at Google Scholar
  44. Z. Jamal and D. Saggerson, “Enzymes involved in adenosine metabolism in rat white and brown adipocytes. Effects of streptozotocin-diabetes, hypothyroidism, age and sex differences,” Biochemical Journal, vol. 245, no. 3, pp. 881–886, 1987. View at Google Scholar
  45. J. J. Ohisalo, S. Stoneham, and L. Keso, “Thyroid status and adenosine content of adipose tissue,” Biochemical Journal, vol. 246, no. 2, pp. 555–557, 1987. View at Google Scholar
  46. M. Franco, O. Galicia, A. Quintana, and F. Martínez, “Experimental hypothyroidism modifies specific binding of A1 and A2A analogues to adenosine receptors in the rat kidney,” British Journal of Pharmacology, vol. 142, no. 3, pp. 461–468, 2004. View at Publisher · View at Google Scholar · View at PubMed
  47. L. M. Harrison-Bernard and L. G. Navar, “Renal cortical and medullary microvascular blood flow autoregulation in rat,” Kidney International, vol. 50, supplement 57, pp. S23–S29, 1996. View at Google Scholar
  48. E. W. Holmes and V. A. DiScala, “Studies on the exaggerated natriuretic response to a saline infusion in the hypothyroid rat,” Journal of Clinical Investigation, vol. 49, no. 6, pp. 1224–1236, 1970. View at Google Scholar
  49. S. Dimitrios, D. S. Emmanouel, M. D. Lindheimer, and A. I. Katz, “Mechanism of impaired water excretion in the hypothyroid rat,” Journal of Clinical Investigation, vol. 54, no. 4, pp. 926–934, 1974. View at Google Scholar
  50. F. Michael, J. Kelley, H. Alpert, and C. A. Vaamonde, “Role of the distal delivery of filtrate in impaired renal dilution on the hypothyroid kidney,” American Journal of Physiology, vol. 230, no. 3, pp. 699–705, 1976. View at Google Scholar
  51. R. W. Schrier, “Body water homeostasis: clinical disorders of urinary dilution and concentration,” Journal of the American Society of Nephrology, vol. 17, no. 7, pp. 1820–1832, 2006. View at Publisher · View at Google Scholar · View at PubMed
  52. M. Miyamoto, Y. Yagil, T. Larson, C. Robertson, and R. L. Ñ. Jamison, “Effects of intrarenal adenosine on renal function and medullary blood flow in the rat,” American Journal of Physiology, vol. 255, no. 6, pp. F1230–F1234, 1988. View at Google Scholar
  53. E. P. Silldorff, M. S. Kreisberg, and T. L. Pallone, “Adenosine modulates vasomotor tone in outer medullary descending vasa recta of the rat,” Journal of Clinical Investigation, vol. 98, no. 1, pp. 18–23, 1996. View at Google Scholar
  54. H. J. Reineck and R. Parma, “Effect of medullary tonicity on urinary sodium excretion in the rat,” Journal of Clinical Investigation, vol. 69, no. 4, pp. 971–978, 1982. View at Google Scholar
  55. A. Vial and G. Burnstock, “A2-purinoceptor-mediated relaxation in the guinea-pig coronary vasculature: a role for nitric oxide,” British Journal of Pharmacology, vol. 109, no. 2, pp. 424–429, 1993. View at Google Scholar
  56. P. L. Martin and A. A. Potts, “The endothelium of the rat renal artery plays an obligatory role in A2 adenosine receptor-mediated relaxation induced by 5-N-ethylcarboxiamidoadenosine and N6-cyclopentil adenosine,” Journal of Pharmacology and Experimental Therapeutics, vol. 270, no. 3, pp. 893–899, 1994. View at Google Scholar
  57. J. M. Li, R. A. Fenton, B. S. Cutler, and J. G. Dobson Jr., “Adenosine enhances nitric oxide production by vascular endothelial cells,” American Journal of Physiology, vol. 269, no. 2, pp. C519–C523, 1995. View at Google Scholar
  58. M.-H. Yen, C. C. Wu, and W.-F. Chiou, “Partially endothelium-dependent vasodilator effect of adenosine in rat aorta,” Hypertension, vol. 11, no. 6, pp. 514–518, 1988. View at Google Scholar
  59. R. J. Barrett and D. A. Droppleman, “Interactions of adenosine A1 receptor-mediated renal vasoconstriction with endogenous nitric oxide and Ang II,” American Journal of Physiology, vol. 265, no. 5, pp. F651–F659, 1993. View at Google Scholar
  60. M. Franco, E. Tapia, F. Martínez et al., “Adenosine regulates renal nitric oxide production in hypothyroid rats,” Journal of the American Society of Nephrology, vol. 10, no. 8, pp. 1681–1688, 1999. View at Google Scholar
  61. A. Quesada, J. Sainz, R. Wangensteen, I. Rodríguez-Gomez, F. Vargas, and A. Osuna, “Nitric oxide synthase activity in hyperthyroid and hypothyroid rats,” European Journal of Endocrinology, vol. 147, no. 1, pp. 117–122, 2002. View at Google Scholar
  62. J. M. Moreno, R. Wangensteen, J. Sainz et al., “Role of endothelium-derived relaxing factors in the renal response to vasoactive agents in hypothyroid rats,” American Journal of Physiology, vol. 285, no. 1, pp. E182–E188, 2003. View at Google Scholar
  63. F. Vargas, A. Fernández-Rivas, J. GarcíaEstañ, and C. García del Río, “Endothelium-dependent and endothelium-independent vasodilation in hyperthyroid and hypothyroid rats,” Pharmacology, vol. 51, no. 5, pp. 308–314, 1995. View at Google Scholar
  64. D. J. Prentice and S. M. O. Hourani, “Activation of multiple sites by adenosine analogues in the rat isolated aorta,” British Journal of Pharmacology, vol. 118, no. 6, pp. 1509–1517, 1996. View at Google Scholar
  65. V. Ralevic and G. Burnstock, “Receptors for purines and pyrimidines,” Pharmacological Reviews, vol. 50, no. 3, pp. 413–492, 1998. View at Google Scholar
  66. K. J. Miller and B. J. Hoffman, “Adenosine A3 receptors regulate serotonin transport via nitric oxide and c GMP,” Journal of Biological Chemistry, vol. 269, no. 44, pp. 27351–27356, 1994. View at Google Scholar
  67. G. Baños, F. Martínez, J. I. Grimaldo, and M. Franco, “Adenosine participates in regulation of smooth muscle relaxation in aortas from rats with experimental hypothyroidism,” Canadian Journal of Physiology and Pharmacology, vol. 80, no. 6, pp. 507–514, 2002. View at Publisher · View at Google Scholar
  68. J. M. Sabio, M. Rodríguez-Maresca, J. D. Luna, C. García del Rio, and F. Vargas, “Vascular reactivity to vasoconstrictors in aorta and renal vasculature of hyperthyroid and hypothyroid rats,” Pharmacology, vol. 49, no. 4, pp. 257–264, 1994. View at Google Scholar
  69. R. D. Gunasekera and H. Kuriyama, “The influence of thyroid states upon responses of the rat aorta to catecholamines,” British Journal of Pharmacology, vol. 99, no. 3, pp. 541–547, 1990. View at Google Scholar
  70. R. B. Meyer and W. Hope, “Evidence that A2 purinoceptors are involved in the endothelium-dependent relaxation of the rat thoraxic aorta,” British Journal of Pharmacology, vol. 100, no. 3, pp. 576–580, 1990. View at Google Scholar
  71. J. P. Headrick and R. M. Berne, “Endothelium-dependent and independent relaxations to adenosine in guinea pig aorta,” American Journal of Physiology, vol. 259, no. 1, pp. H62–H67, 1990. View at Google Scholar
  72. R. F. Furchgott, “Role of endothelium in responses of vascular smooth muscle,” Circulation Research, vol. 53, no. 5, pp. 557–573, 1983. View at Google Scholar
  73. J. Li, R. A. Fenton, H. B. Wheeler et al., “Adenosine A2a receptors increase arterial endothelial cell nitric oxide,” Journal of Surgical Research, vol. 80, no. 2, pp. 357–364, 1998. View at Google Scholar
  74. A. Vials and G. Burnstock, “A2 purinoceptor-mediated relaxation in the guinea pig coronary vasculature: role for nitric oxide,” British Journal of Pharmacology, vol. 109, no. 2, pp. 424–429, 1993. View at Google Scholar
  75. P. Vuorinen, I. Porsti, T. Metsa-Ketela, V. Manninen, H. Vapaatalo, and K. E. Laustiola, “Endothelium-dependent and –independent effects of exogenous ATP, adenosine, GTP, and guanosine on vascular tone and cyclic nucleotide accumulation of rat mesenteric artery,” British Journal of Pharmacology, vol. 105, no. 2, pp. 279–284, 1992. View at Google Scholar
  76. K. Yagi, I. Nishino, M. Eguchi, M. Kitagawa, Y. Miura, and T. Mizoguchi, “Involvement of ecto-ATPase as an ATP receptor in the stimulatory effect of extracellular ATP on NO release in bovine aorta endothelial cells,” Biochemical and Biophysical Research Communications, vol. 203, no. 2, pp. 1237–1243, 1994. View at Publisher · View at Google Scholar · View at PubMed
  77. J. Linden, “Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions,” Trends in Pharmacological Sciences, vol. 15, no. 2, pp. 298–306, 1994. View at Publisher · View at Google Scholar
  78. C. E. Muller, “A1-adenosine receptor antagonist,” Expert Opinion on Therapeutic Patents, vol. 7, no. 5, pp. 419–440, 1997. View at Publisher · View at Google Scholar
  79. H. Moritoki, T. Matsugi, H. Takase, H. Ueda, and A. Tanioka, “Evidence for the involvement of cyclic GMP in adenosine-induced, age-dependent vasodilatation,” British Journal of Pharmacology, vol. 100, no. 3, pp. 569–575, 1990. View at Google Scholar
  80. A. E. Hak, H. A. Pols, T. J. Visser, H. A. Drexhage, A. Hofman, and J. C. Witteman, “Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam study,” Annals of Internal Medicine, vol. 132, no. 4, pp. 270–278, 2000. View at Google Scholar
  81. M. Aviram, M. Rosenblat, C. L. Bisgaier, R. S. Newton, S. L. Primo-Parmo, and B. N. La Du, “Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase,” Journal of Clinical Investigation, vol. 101, no. 8, pp. 1581–1590, 1998. View at Google Scholar
  82. S. Deakin, I. Leviev, M. Gomaraschi, L. Calabresi, G. Franceschini, and R. W. James, “Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism,” Journal of Biological Chemistry, vol. 277, no. 6, pp. 4301–4308, 2002. View at Publisher · View at Google Scholar · View at PubMed
  83. A. Kontush, S. Chantepie, and M. J. Chapman, “Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 10, pp. 1881–1888, 2003. View at Publisher · View at Google Scholar · View at PubMed
  84. C. Mineo, H. Deguchi, J. H. Griffin, and P. W. Shaul, “Endothelial and antithrombotic actions of HDL,” Circulation Research, vol. 98, no. 11, pp. 1352–1364, 2006. View at Publisher · View at Google Scholar · View at PubMed
  85. G. W. Cockerill, K. A. Rye, J. R. Gamble, M. A. Vadas, and P. J. Barter, “High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 11, pp. 1987–1994, 1995. View at Google Scholar
  86. L. Calabresi, G. Franceschini, C. R. Sirtori et al., “Inhibition of VCAM-1 expression in endothelial cells by reconstituted high density lipoproteins,” Biochemical and Biophysical Research Communications, vol. 238, no. 1, pp. 61–65, 1997. View at Publisher · View at Google Scholar · View at PubMed
  87. A. R. Cappola and P. W. Ladenson, “Hypothyroidism and atherosclerosis,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 6, pp. 2438–2444, 2003. View at Google Scholar
  88. M. P. Vanderpump, W. M. Tunbridge, J. M. French et al., “The development of ischemic heart disease in relation to autoimmune thyroid disease in a 20-year follow-up study of an English community,” Thyroid, vol. 6, no. 3, pp. 155–160, 1996. View at Google Scholar
  89. S. Razvi, J. U. Weaver, M. P. Vanderpump, and S. H. Pearce, “The incidence of ischemic heart disease and mortality in people with subclinical hypothyroidism: reanalysis of the Whickham Survey cohort,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 4, pp. 1734–1740, 2010. View at Google Scholar
  90. N. Rodondi, A. B. Newman, E. Vittinghoff et al., “Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death,” Archives of Internal Medicine, vol. 165, no. 21, pp. 2460–2466, 2005. View at Publisher · View at Google Scholar · View at PubMed
  91. J. J. Staub, B. U. Althaus, H. Engler et al., “Spectrum of subclinical and overt hypothyroidism: effect on thyrotropin, prolactin, and thyroid reserve, and metabolic impact on peripheral target tissues,” American Journal of Medicine, vol. 92, no. 6, pp. 631–642, 1992. View at Publisher · View at Google Scholar
  92. B. Staels, A. Van Tol, L. Chan, H. Will, G. Verhoeven, and J. Auwerx, “Alterations in thyroid status modulate apolipoprotein, hepatic triglyceride lipase, and low density lipoprotein receptor in rats,” Endocrinology, vol. 127, no. 3, pp. 1144–1152, 1990. View at Google Scholar
  93. A. Chait, E. L. Bierman, and J. J. Albers, “Regulatory role of triiodothyronine in the degradation of low density lipoprotein by cultured human skin fibroblasts,” Journal of Clinical Endocrinology and Metabolism, vol. 48, no. 5, pp. 887–889, 1979. View at Google Scholar
  94. K. W. Walton, P. J. Scott, P. W. Dykes, and J. W. Davies, “The significance of alterations in serum lipids in thyroid dysfunction. II. Alterations of the metabolism and turnover of 131-I-low-density lipoproteins in hypothyroidism and thyrotoxicosis,” Clinical Science, vol. 29, no. 2, pp. 217–238, 1965. View at Google Scholar
  95. G. R. Thompson, A. K. Soutar, F. A. Spengel, A. Jadhav, S. J. Gavigan, and N. B. Myant, “Defects of receptor-mediated low density lipoprotein catabolism in homozygous familial hypercholesterolemia and hypothyrodism in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 4, pp. 2591–2595, 1981. View at Google Scholar
  96. O. Bakker, F. Hudig, S. Meijssen, and W. M. Wiersinga, “Effects of triiodothyronine and amiodarone on the promoter of the human LDL receptor gene,” Biochemical and Biophysical Research Communications, vol. 249, no. 2, pp. 517–521, 1998. View at Publisher · View at Google Scholar · View at PubMed
  97. O. Pérez-Méndez, J. E. Carreón-Torres, M. Franco, and M. A. Juárez-Oropeza, “HDL physicochemical characteristics as determinants of their plasma concentrations: what we have learned from thiazolidinediones,” in HDL and LDL Cholesterol: Physiology and Clinical Significance, F. Columbus, Ed., Nova Science, 2009. View at Google Scholar
  98. B. U. Althaus, J. J. Staub, A. Ryff-De Leche, A. Oberhansli, and H. B. Stahelin, “LDL/HDL-changes in subclinical hypothyroidism: possible risk factors for coronary heart disease,” Clinical Endocrinology, vol. 28, no. 2, pp. 157–163, 1988. View at Google Scholar
  99. P. Caron, C. Calazel, H. J. Parra, M. Hoff, and J. P. Louvet, “Decreased HDL cholesterol in subclinical hypothyroidism: the effect of L-thyroxine therapy,” Clinical Endocrinology, vol. 33, no. 4, pp. 519–523, 1990. View at Google Scholar
  100. S. Valdemarsson, P. Hedner, and P. Nilsson-Ehle, “Dyslipoproteinaemia in hypothyroidism of pituitary origin: effects of L-thyroxine substitution on lipoprotein lipase, hepatic lipase, and on plasma lipoproteins,” Acta Endocrinologica, vol. 103, no. 2, pp. 192–197, 1983. View at Google Scholar
  101. E. Muls, M. Rosseneu, V. Blaton, E. Lesaffre, G. Lamberigts, and P. De Moor, “Serum lipids and apoliproteins A-I, A-II and B in primary hypothyroidism before and during treatment,” European Journal of Clinical Investigation, vol. 14, no. 1, pp. 12–15, 1984. View at Google Scholar
  102. A. G. Scottolini, N. V. Bhagavan, T. H. Oshiro, and S. Y. Abe, “Serum high-density lipoprotein cholesterol concentrations in hypo- and hyperthyroidism,” Clinical Chemistry, vol. 26, no. 5, pp. 584–587, 1980. View at Google Scholar
  103. M. J. Diekman, N. Anghelescu, E. Endert, O. Bakker, and W. M. Wiersinga, “Changes in plasma low-density lipoprotein (LDL)- and high-density lipoprotein cholesterol in hypo- and hyperthyroid patients are related to changes in free thyroxine, not to polymorphisms in LDL receptor or cholesterol ester transfer protein genes,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 5, pp. 1857–1862, 2000. View at Publisher · View at Google Scholar
  104. C. Meier, J. J. Staub, C. B. Roth et al., “TSH-controlled L-thyroxine therapy reduces cholesterol levels and clinical symptoms in subclinical hypothyroidism: a double blind, placebo-controlled trial (Basel Thyroid Study),” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 10, pp. 4860–4866, 2001. View at Publisher · View at Google Scholar
  105. M. Franco, G. Castro, L. Romero et al., “Decreased activity of lecithin: cholesterol acyltransferase and hepatic lipase in chronic hypothyroid rats: implications for reverse cholesterol transport,” Molecular and Cellular Biochemistry, vol. 246, no. 1-2, pp. 51–56, 2003. View at Publisher · View at Google Scholar
  106. N. D. Ridgway and P. J. Dolphin, “Serum activity and hepatic secretion of lecithin: cholesterol acyltransferase in experimental hypothyroidism and hypercholesterolemia,” Journal of Lipid Research, vol. 26, no. 11, pp. 1300–1313, 1985. View at Google Scholar
  107. G. Brenta, G. Berg, P. Arias et al., “Lipoprotein alterations, hepatic lipase activity, and insulin sensitivity in subclinical hypothyroidism: response to L-T(4) treatment,” Thyroid, vol. 17, no. 5, pp. 453–460, 2007. View at Publisher · View at Google Scholar · View at PubMed
  108. C. Huesca-Gómez, M. Franco, G. Luc et al., “Chronic hypothyroidism induces abnormal structure of high-density lipoproteins and impaired kinetics of apolipoprotein A-I in the rat,” Metabolism, vol. 51, no. 4, pp. 443–450, 2002. View at Publisher · View at Google Scholar
  109. L. Johansson, M. Rudling, T. S. Scanlan et al., “Selective thyroid receptor modulation by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 29, pp. 10297–10302, 2005. View at Publisher · View at Google Scholar · View at PubMed
  110. N. R. Webb, L. Cai, K. S. Ziemba et al., “The fate of HDL particles in vivo after SR-BI-mediated selective lipid uptake,” Journal of Lipid Research, vol. 43, no. 11, pp. 1890–1898, 2002. View at Publisher · View at Google Scholar
  111. M. Lacasaña, I. López-Flores, M. Rodríguez-Barranco et al., “Interaction between organophosphate pesticide exposure and PON1 activity on thyroid function,” Toxicology and Applied Pharmacology, vol. 249, no. 1, pp. 16–24, 2010. View at Publisher · View at Google Scholar · View at PubMed
  112. M. Aviram, E. Hardak, J. Vaya et al., “Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities,” Circulation, vol. 101, no. 21, pp. 2510–2517, 2000. View at Google Scholar
  113. E. Carreón-Torres, K. Rendón-Sauer, M. Monter Garrido et al., “Rosiglitazone modifies HDL structure and increases HDL-apo AI synthesis and catabolism,” Clinica Chimica Acta, vol. 401, no. 1-2, pp. 37–41, 2009. View at Google Scholar
  114. F. Azizi, F. Raiszadeh, M. Solati, A. Etemadi, M. Rahmani, and M. Arabi, “Serum paraoxonase 1 activity is decreased in thyroid dysfunction,” Journal of Endocrinological Investigation, vol. 26, no. 8, pp. 703–709, 2003. View at Google Scholar
  115. G. Baskol, H. Atmaca, F. Tanriverdi, M. Baskol, D. Kocer, and F. Bayram, “Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment,” Experimental and Clinical Endocrinology & Diabetes, vol. 115, no. 8, pp. 522–526, 2007. View at Publisher · View at Google Scholar · View at PubMed
  116. S. E. Nissen, E. M. Tuzcu, P. Schoenhagen et al., “Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease,” The New England Journal of Medicine, vol. 352, no. 1, pp. 29–38, 2005. View at Publisher · View at Google Scholar · View at PubMed
  117. I. Tancevski, P. Eller, J. R. Patsch, and A. Ritsch, “The resurgence of thyromimetics as lipid-modifying agents,” Current Opinion in Investigational Drugs, vol. 10, no. 9, pp. 912–918, 2009. View at Google Scholar
  118. F. Flamant, J. D. Baxter, D. Forrest et al., “International union of pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors,” Pharmacological Reviews, vol. 58, no. 4, pp. 705–711, 2006. View at Publisher · View at Google Scholar · View at PubMed
  119. B. Gloss, S. Trost, W. Bluhm et al., “Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta,” Endocrinology, vol. 142, no. 2, pp. 544–550, 2001. View at Publisher · View at Google Scholar