Table of Contents Author Guidelines Submit a Manuscript
Journal of Thyroid Research
Volume 2012, Article ID 512401, 8 pages
http://dx.doi.org/10.1155/2012/512401
Review Article

Controversies in the Management and Followup of Differentiated Thyroid Cancer: Beyond the Guidelines

Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, 3 Dag Hammarskjold Plaza, New York, NY 10017, USA

Received 31 October 2012; Accepted 12 December 2012

Academic Editor: Maria Grazia Chiofalo

Copyright © 2012 Hala Ahmadieh and Sami T. Azar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Cancer Society, Cancer Facts & Figures 2012, American Cancer Society, Atlanta, Ga, USA, 2012.
  2. F. Giusti, A. Falchetti, F. Franceschelli, F. Marini, A. Tanini, and M. L. Brandi, “Thyroid cancer: current molecular perspectives,” Journal of Oncology, vol. 2010, Article ID 351679, 17 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Pacini, M. G. Castagna, L. Brilli, and G. Pentheroudakis, “Differentiated thyroid cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up,” Annals of Oncology, vol. 20, no. 4, pp. 143–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Tuttle, R. Leboeuf, and A. R. Shaha, “Medical management of thyroid cancer: a risk adapted approach,” Journal of Surgical Oncology, vol. 97, no. 8, pp. 712–716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. B. H. H. Lang, C. Y. Lo, W. F. Chan, K. Y. Lam, and K. Y. Wan, “Staging systems for papillary thyroid carcinoma: a review and comparison,” Annals of Surgery, vol. 245, no. 3, pp. 366–378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. R. Shaha, “TNM classification of thyroid carcinoma,” World Journal of Surgery, vol. 31, no. 5, pp. 879–887, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F. L. Greene, D. L. Page, I. D. Fleming et al., Eds., AJCC Cancer Staging Handbook: TNM Classification of Malignant Tumors, Springer, New York, NY, USA, 6th edition, 2002.
  8. H. Tran Cao, L. Johnston, D. Chang, and M. Bouvet, “The AJCC TNM staging underestimates risk in young patients with more aggressive differentiated thyroid cancer,” Clinical Thyroidology, vol. 24, no. 6, 2012. View at Google Scholar
  9. I. D. Hay, C. S. Grant, W. F. Taylor, and W. M. McConahey, “Ipsilateral lobectomy versus bilateral lobar resection in papillary thyroid carcinoma: a retrospective analysis of surgical outcome using a novel prognostic scoring system,” Surgery, vol. 102, no. 6, pp. 1088–1095, 1987. View at Google Scholar · View at Scopus
  10. I. D. Hay, E. J. Bergstralh, J. R. Goellner et al., “Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989,” Surgery, vol. 114, no. 6, pp. 1050–1058, 1993. View at Google Scholar · View at Scopus
  11. B. Cady, R. Rossi, I. Hay, K. H. Cohn, and N. W. Thompson, “An expanded view of risk-group definition in differentiated thyroid carcinoma,” Surgery, vol. 104, no. 6, pp. 947–953, 1988. View at Google Scholar · View at Scopus
  12. L. E. Johnston, H. S. Tran Cao, D. C. Chang, and M. Bouvet, “Sociodemographic predictors of survival in differentiated thyroid cancer: results from the SEER database,” ISRN Endocrinology, vol. 2012, Article ID 384707, 8 pages, 2012. View at Publisher · View at Google Scholar
  13. D. S. Cooper, G. M. Doherty, B. R. Haugen et al., “Revised American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer,” Thyroid, vol. 19, no. 11, pp. 1167–1214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Perros, S. Clarke, J. Franklyn et al., “Guidelines for the management of thyroid cancer,” British Thyroid Association, 2007.
  15. K. Y. Bilimoria, D. J. Bentrem, C. Y. Ko et al., “Extent of surgery affects survival for papillary thyroid cancer,” Annals of Surgery, vol. 246, no. 3, pp. 375–381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Vaisman, A. Shaha, S. Fish, and R. Tuttle, “Initial therapy with either thyroid lobectomy or total thyroidectomy without radioactive iodine remnant ablation is associated with very low rates of structural disease recurrence in properly selected patients with differentiated thyroid cancer,” Clinical Endocrinology, vol. 75, no. 1, pp. 112–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. H. Mendelsohn, D. A. Elashoff, E. Abemayor, and M. A. St John, “Surgery for papillary thyroid carcinoma: is lobectomy enough?” Archives of Otolaryngology—Head and Neck Surgery, vol. 136, no. 11, pp. 1055–1061, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. E. L. Mazzaferri, G. M. Doherty, and D. L. Steward, “The pros and cons of prophylactic central compartment lymph node dissection for papillary thyroid carcinoma,” Thyroid, vol. 19, no. 7, pp. 683–689, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Stulak, C. S. Grant, D. R. Farley et al., “Value of preoperative ultrasonography in the surgical management of initial and reoperative papillary thyroid cancer,” Archives of Surgery, vol. 141, no. 5, pp. 489–496, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. W. T. Shen, L. Ogawa, D. Ruan, I. Suh, Q. Y. Duh, and O. H. Clark, “Central neck lymph node dissection for papillary thyroid cancer: the reliability of surgeon judgment in predicting which patients will benefit,” Surgery, vol. 148, no. 2, pp. 398–403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. L. Roh, J. Y. Park, and C. I. Park, “Total thyroidectomy plus neck dissection in differentiated papillary thyroid carcinoma patients: pattern of nodal metastasis, morbidity, recurrence, and postoperative levels of serum parathyroid hormone,” Annals of Surgery, vol. 245, no. 4, pp. 604–610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. D. Podnos, D. Smith, L. D. Wagman, and J. D. I. Ellenhorn, “The implication of lymph node metastasis on survival in patients with well-differentiated thyroid cancer,” American Surgeon, vol. 71, no. 9, pp. 731–734, 2005. View at Google Scholar · View at Scopus
  23. M. Sywak, L. Cornford, P. Roach, P. Stalberg, S. Sidhu, and L. Delbridge, “Routine ipsilateral level VI lymphadenectomy reduces postoperative thyroglobulin levels in papillary thyroid cancer,” Surgery, vol. 140, no. 6, pp. 1000–1007, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Bonnet, D. Hartl, S. Leboulleux et al., “Prophylactic lymph node dissection for papillary thyroid cancer less than 2 cm: implications for radioiodine treatment,” The Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 4, pp. 1162–1167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Takami, Y. Ito, T. Okamoto, and A. Yoshida, “Therapeutic strategy for differentiated thyroid carcinoma in japan based on a newly established guideline managed by Japanese society of thyroid surgeons and Japanese association of endocrine surgeons,” World Journal of Surgery, vol. 35, no. 1, pp. 111–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Tala and R. Tuttle, “Contemporary post surgical management of differentiated thyroid carcinoma,” Clinical Oncology, vol. 22, no. 6, pp. 419–429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Durante, N. Haddy, E. Baudin et al., “Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy,” The Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 8, pp. 2892–2899, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Schlumberger, B. Catargi, I. Borget et al., “Strategies of radioiodine ablation in patients with low-risk thyroid cancer,” The New England Journal of Medicine, vol. 366, no. 18, pp. 1663–1673, 2012. View at Publisher · View at Google Scholar
  29. U. Mallick, C. Harmer, B. Yap et al., “Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer,” The New England Journal of Medicine, vol. 366, no. 18, pp. 1674–1685, 2012. View at Publisher · View at Google Scholar
  30. W. Moses, J. Weng, I. Sansano et al., “Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy,” World Journal of Surgery, vol. 34, no. 11, pp. 2589–2594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. T. J. Musholt, C. Fottner, M. M. Weber et al., “Detection of papillary thyroid carcinoma by analysis of BRAF and RET/PTC1 mutations in fine-needle aspiration biopsies of thyroid nodules,” World Journal of Surgery, vol. 34, no. 11, pp. 2595–2603, 2010. View at Google Scholar · View at Scopus
  32. Y. E. Nikiforov, D. L. Steward, T. M. Robinson-Smith et al., “Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules,” The Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 6, pp. 2092–2098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Cantara, M. Capezzone, S. Marchisotta et al., “Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology,” The Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 3, pp. 1365–1369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Franco, V. Martínez, J. P. Allamand et al., “Molecular markers in thyroid fine-needle aspiration biopsy: a prospective study,” Applied Immunohistochemistry and Molecular Morphology, vol. 17, no. 3, pp. 211–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. N. J. McGriff, G. Csako, L. Gourgiotis, L. C. Guthrie, F. Pucino, and N. J. Sarlis, “Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer,” Annals of Medicine, vol. 34, no. 7-8, pp. 554–564, 2002. View at Google Scholar · View at Scopus
  36. J. Jonklaas, N. J. Sarlis, D. Litofsky et al., “Outcomes of patients with differentiated thyroid carcinoma following initial therapy,” Thyroid, vol. 16, no. 12, pp. 1229–1242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Sugitani and Y. Fujimoto, “Does postoperative thyrotropin suppression therapy truly decrease recurrence in papillary thyroid carcinoma? A randomized controlled trial,” The Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 10, pp. 4576–4583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Zafón, “TSH-suppressive treatment in differentiated thyroid cancer. A dogma under review,” Endocrinología y Nutrición, vol. 59, no. 2, pp. 125–130, 2012. View at Publisher · View at Google Scholar
  39. A. I. Hellevik, B. O. Åsvold, T. Bjøro, P. R. Romundstad, T. I. L. Nilsen, and L. J. Vatten, “Thyroid function and cancer risk: a prospective population study,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 2, pp. 570–574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J. J. Bergh, H. Y. Lin, L. Lansing et al., “Integrin αVβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis,” Endocrinology, vol. 146, no. 7, pp. 2864–2871, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Antonelli, P. Miccoli, M. Ferdeghini et al., “Role of neck ultrasonography in the follow-up of patients operated on for thyroid cancer,” Thyroid, vol. 5, no. 1, pp. 25–28, 1995. View at Google Scholar · View at Scopus
  42. U. Feine, R. Lietzenmayer, J. P. Hanke, J. Held, H. Wöhrle, and W. Müller-Schauenburg, “Fluorine-18-FDG and iodine- 131-iodide uptake in thyroid cancer,” Journal of Nuclear Medicine, vol. 37, no. 9, pp. 1468–1472, 1996. View at Google Scholar · View at Scopus
  43. W. Wang, H. Macapinlac, S. M. Larson et al., “[18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic131I whole body scans and elevated serum thyroglobulin levels,” The Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 7, pp. 2291–2302, 1999. View at Google Scholar · View at Scopus
  44. S. Leboulleux, P. R. Schroeder, N. L. Busaidy et al., “Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 4, pp. 1310–1316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. R. W. Tsang, J. D. Brierley, W. J. Simpson, T. Panzarella, M. K. Gospodarowicz, and S. B. Sutcliffe, “The effects of surgery, radioiodine, and external radiation therapy on the clinical outcome of patients with differentiated thyroid carcinoma,” Cancer, vol. 82, no. 2, pp. 375–388, 1998. View at Google Scholar
  46. J. Farahati, C. Reiners, M. Stuschke et al., “Differentiated thyroid cancer. Impact of adjuvant external radiotherapy in patients with perithyroidal tumor infiltration (stage pT4),” Cancer, vol. 77, no. 1, pp. 172–180, 1996. View at Google Scholar
  47. C. F. A. Eustatia-Rutten, J. A. Romijn, M. J. Guijt et al., “Outcome of palliative embolization of bone metastases in differentiated thyroid carcinoma,” The Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3184–3189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Orita, I. Sugitani, K. Toda, J. Manabe, and Y. Fujimoto, “Zoledronic acid in the treatment of bone metastases from differentiated thyroid carcinoma,” Thyroid, vol. 21, no. 1, pp. 31–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Santini, V. Bottici, R. Elisei et al., “Cytotoxic effects of carboplatinum and epirubicin in the setting of an elevated serum thyrotropin for advanced poorly differentiated thyroid cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 9, pp. 4160–4165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Ravaud, C. de la Fouchardière, F. Courbon et al., “Sunitinib in patients with refractory advanced thyroid cancer: the THYSU phase II trial,” Journal of Clinical Oncology, vol. 26, article 6058, 2008. View at Google Scholar
  51. K. C. Bible, R. C. Smallridge, W. J. Maples et al., “Endocrine Malignancies Disease Oriented Group, Mayo Phase 2 Consortium; Mayo Clinic, Rochester, MN; Mayo Clinic, Jacksonville, FL; National Cancer Institute, Bethesda, MD. Phase II trial of pazopanib in progressive, metastatic, iodine-insensitive differentiated thyroid cancers,” Journal of Clinical Oncology, vol. 27, article 3521, 2009. View at Google Scholar
  52. N. Busaidy and M. Cabanillas, “Differentiated thyroid cancer: management of patients with radioiodine nonresponsive disease,” Journal of Thyroid Research, vol. 2012, Article ID 618985, 12 pages, 2012. View at Publisher · View at Google Scholar