Table of Contents Author Guidelines Submit a Manuscript
Journal of Thyroid Research
Volume 2013 (2013), Article ID 434727, 8 pages
http://dx.doi.org/10.1155/2013/434727
Review Article

New Approaches to Thyroid Hormones and Purinergic Signaling

1Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Porto Alegre (IFRS-POA), Rua Ramiro Barcelos 2777, 90.035-007 Porto Alegre, RS, Brazil
2Departamento de Análises Clínicas, Faculdade de Farmácia da Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil

Received 29 March 2013; Accepted 20 June 2013

Academic Editor: Noriyuki Koibuchi

Copyright © 2013 Gabriel Fernandes Silveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Balazs, P. D. Lewis, and A. J. Patel, “Effects of metabolic factors on brain development,” Growth and Development of the Brain, pp. 83–115, 1975. View at Google Scholar
  2. M. B. Dratman and J. T. Gordon, “Thyroid hormones as neurotransmitters,” Thyroid, vol. 6, no. 6, pp. 639–647, 1996. View at Google Scholar · View at Scopus
  3. O. Karapanou and A. Papadimitriou, “Thyroid hormone transporters in the human,” Hormones, vol. 10, no. 4, pp. 270–279, 2011. View at Google Scholar · View at Scopus
  4. Z. Liu, W. Long, D. A. Fryburg, and E. J. Barrett, “The regulation of body and skeletal muscle protein metabolism by hormones and amino acids,” Journal of Nutrition, vol. 136, no. 1, pp. 212–217, 2006. View at Google Scholar · View at Scopus
  5. K. Ojamaa, C. Balkman, and I. L. Klein, “Acute effects of triiodothyronine on arterial smooth muscle cells,” The Annals of Thoracic Surgery, vol. 56, no. 1, pp. S61–S67, 1993. View at Google Scholar · View at Scopus
  6. J. J. Orgiazzi and R. Mornex, “Hyperthyroidism,” The Thyroid Gland, p. 405, 1990. View at Google Scholar
  7. J. P. Bilezikian and J. N. Loeb, “The influence of hyperthyroidism and hypothyroidism on α- and β-adrenergic receptor systems and adrenergic responsiveness,” Endocrine Reviews, vol. 4, no. 4, pp. 378–388, 1983. View at Google Scholar · View at Scopus
  8. L. W. Hu, L. A. Benvenuti, E. A. Liberti, M. S. Carneiro-Ramos, and M. L. M. Barreto-Chaves, “Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling,” American Journal of Physiology, vol. 285, no. 6, pp. R1473–R1480, 2003. View at Google Scholar · View at Scopus
  9. G. Engstrom, T. H. Svensson, and B. Waldeck, “Thyroxine and brain catecholamines: increased transmitter synthesis and increased receptor sensitivity,” Brain Research, vol. 77, no. 3, pp. 471–483, 1974. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Shuaib, S. Ijaz, S. Hemmings et al., “Decreased glutamate release during hypothyroidism may contribute to protection in cerebral ischemia,” Experimental Neurology, vol. 128, no. 2, pp. 260–265, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. P. R. Lee, D. Brady, and J. I. Koenig, “Thyroid hormone regulation of N-methyl-D-aspartic acid receptor subunit mRNA expression in adult brain,” Journal of Neuroendocrinology, vol. 15, no. 1, pp. 87–92, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. D. Pollard, J. G. McLeod, T. G. Angel Honnibal, and M. A. Verheijden, “Hypothyroid polyneuropathy. Clinical, electrophysiological and nerve biopsy findings in two cases,” Journal of the Neurological Sciences, vol. 53, no. 3, pp. 461–471, 1982. View at Publisher · View at Google Scholar · View at Scopus
  13. J. H. Oppenheimer and H. L. Schwartz, “Molecular basis of thyroid hormone-dependent brain development,” Endocrine Reviews, vol. 18, no. 4, pp. 462–475, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. J. H. Dussault and J. Ruel, “Thyroid hormones and brain development,” Annual Review of Physiology, vol. 49, pp. 321–334, 1987. View at Google Scholar · View at Scopus
  15. S. E. Geel, T. Valcana, and P. S. Timiras, “Effect of neonatal hypothyroidism and of thyroxine on L-[14C] leucine incorporation in protein in vivo and the relationship to ionic levels in the developing brain of the rat,” Brain Research, vol. 4, no. 2-3, pp. 143–150, 1967. View at Google Scholar · View at Scopus
  16. J. H. Oppenheimer, D. Koerner, H. L. Schwartz, and M. I. Surks, “Specific nuclear triiodothyronine binding sites in rat liver and kidney,” Journal of Clinical Endocrinology and Metabolism, vol. 35, no. 2, pp. 330–333, 1972. View at Google Scholar · View at Scopus
  17. J. H. Oppenheimer, H. L. Schwartz, and M. I. Surks, “Nuclear binding capacity appears to limit the hepatic response to L-triiodothyronine (T3),” Endocrine Research Communications, vol. 2, no. 4-5, pp. 309–325, 1975. View at Google Scholar · View at Scopus
  18. M. López-Barahona, I. Fialka, J. M. Gonzalez-Sancho et al., “Thyroid hormone regulates stromelysin expression, protease secretion and the morphogenetic potential of normal polarized mammary epithelial cells,” EMBO Journal, vol. 14, no. 6, pp. 1145–1155, 1995. View at Google Scholar · View at Scopus
  19. J. M. González-Sancho, A. Figueroa, M. López-Barahona, E. López, H. Beug, and A. Muñoz, “Inhibition of proliferation and expression of T1and Cyclin D1genes by thyroid hormone in mammary epithelial cells,” Molecular Carcinogenesis, vol. 34, no. 1, pp. 25–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. P. J. Davis and F. B. Davis, “Nongenomic actions of thyroid hormone,” Thyroid, vol. 6, no. 5, pp. 497–504, 1996. View at Google Scholar · View at Scopus
  21. A. P. Farwell, M. P. Tranter, and J. L. Leonard, “Thyroxine-dependent regulation of integrin-laminin interactions in astrocytes,” Endocrinology, vol. 136, no. 9, pp. 3909–3915, 1995. View at Google Scholar · View at Scopus
  22. P. K. Sarkar and A. Kumar Ray, “Synaptosomal T3 content in cerebral cortex of adult rat in different thyroidal states,” Neuropsychopharmacology, vol. 11, no. 3, pp. 151–155, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Incerpi, P. Luly, P. De Vito, and R. N. Farias, “Short-term effects of thyroid hormones on the Na/H antiport in L-6 myoblasts: high molecular specificity for 3,3',5-triiodo-L-thyronine,” Endocrinology, vol. 140, no. 2, pp. 683–689, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. P. J. Davis, M. Zhou, F. B. Davis, L. Lansing, S. A. Mousa, and H.-Y. Lin, “Mini-review: cell surface receptor for thyroid hormone and nongenomic regulation of ion fluxes in excitable cells,” Physiology and Behavior, vol. 99, no. 2, pp. 237–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. J. H. D. Bassett, C. B. Harvey, and G. R. Williams, “Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions,” Molecular and Cellular Endocrinology, vol. 213, no. 1, pp. 1–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Zamoner, A. N. Bruno, E. A. Casali et al., “Genomic-independent action of thyroid hormones on NTPDase activities in Sertoli cell cultures from congenital hypothyroid rats,” Life Sciences, vol. 80, no. 1, pp. 51–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Zamoner, P. F. Corbelini, C. Funchal, D. Menegaz, F. R. M. Barreto Silva, and R. Pessoa-Pureur, “Involvement of calcium-dependent mechanisms in T3-induced phosphorylation of vimentin of immature rat testis,” Life Sciences, vol. 77, no. 26, pp. 3321–3335, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Burnstock, “Do some sympathetic neurones synthesize and release both noradrenaline and acetylcholine?” Progress in Neurobiology, vol. 11, no. 3-4, pp. 205–222, 1978. View at Google Scholar · View at Scopus
  29. G. Burnstock and C. Kennedy, “Is there a basis for distinguishing two types of P2-purinoceptor?” General Pharmacology, vol. 16, no. 5, pp. 433–440, 1985. View at Google Scholar · View at Scopus
  30. V. Ralevic and G. Burnstock, “Receptors for purines and pyrimidines,” Pharmacological Reviews, vol. 50, no. 3, pp. 413–492, 1998. View at Google Scholar · View at Scopus
  31. M. P. Abbracchio, G. Burnstock, J.-M. Boeynaems et al., “International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy,” Pharmacological Reviews, vol. 58, no. 3, pp. 281–341, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. T. M. Palmer and G. L. Stiles, “Adenosine receptors,” Neuropharmacology, vol. 34, no. 7, pp. 683–694, 1995. View at Publisher · View at Google Scholar · View at Scopus
  33. T. V. Dunwiddie and S. A. Masino, “The role and regulation of adenosine in the central nervous system,” Annual Review of Neuroscience, vol. 24, pp. 31–55, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Dragunow, “Purinergic mechanisms in epilepsy,” Progress in Neurobiology, vol. 31, no. 2, pp. 85–108, 1988. View at Google Scholar · View at Scopus
  35. A. G. Gilman, “G proteins: transducers of receptor-generated signals,” Annual Review of Biochemistry, vol. 56, pp. 615–649, 1987. View at Google Scholar · View at Scopus
  36. M. W. Salter, Y. De Koninck, and J. L. Henry, “Physiological roles for adenosine and ATP in synaptic transmission in the spinal dorsal horn,” Progress in Neurobiology, vol. 41, no. 2, pp. 125–156, 1993. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Kumari, J. C. Buckingham, R. H. Poyser, and P. O. Cover, “Roles for adenosine A1- and A2-receptors in the control of thyrotrophin and prolactin release from the anterior pituitary gland,” Regulatory Peptides, vol. 79, no. 1, pp. 41–46, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Robberecht, M. Deschodt-Lanckman, and J. C. Camus, “VIP activation of rat anterior pituitary adenylate cyclase,” FEBS Letters, vol. 103, no. 2, pp. 229–233, 1979. View at Publisher · View at Google Scholar · View at Scopus
  39. R. F. Berman, B. B. Fredholm, U. Aden, and W. T. O'Connor, “Evidence for increased dorsal hippocampal adenosine release and metabolism during pharmacologically induced seizures in rats,” Brain Research, vol. 872, no. 1-2, pp. 44–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Latini and F. Pedata, “Adenosine in the central nervous system: release mechanisms and extracellular concentrations,” Journal of Neurochemistry, vol. 79, no. 3, pp. 463–484, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Sawynok, “Adenosine receptor activation and nociception,” European Journal of Pharmacology, vol. 347, no. 1, pp. 1–11, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. M. F. Jarvis and E. A. Kowaluk, “Pharmacological characterization of P2X3 homomeric and heteromeric channels in nociceptive signaling and behavior,” Drug Development Research, vol. 52, no. 1-2, pp. 220–231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Giménez-Llort, A. Fernández-Teruel, R. M. Escorihuela et al., “Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate,” European Journal of Neuroscience, vol. 16, no. 3, pp. 547–550, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. B. B. Fredholm, K. Bättig, J. Holmén, A. Nehlig, and E. E. Zvartau, “Actions of caffeine in the brain with special reference to factors that contribute to its widespread use,” Pharmacological Reviews, vol. 51, no. 1, pp. 83–133, 1999. View at Google Scholar · View at Scopus
  45. T. Simoncini, A. Hafezi-Moghadam, D. P. Brazil, K. Ley, W. W. Chin, and J. K. Llao, “Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase,” Nature, vol. 407, no. 6803, pp. 538–541, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. C. G. Almeida, A. De Mendonça, R. A. Cunha, and J. A. Ribeiro, “Adenosine promotes neuronal recovery from reactive oxygen species induced lesion in rat hippocampal slices,” Neuroscience Letters, vol. 339, no. 2, pp. 127–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. Z. Nie, Y. Mei, M. Ford et al., “Oxidative stress increases A1 adenosine receptor expression by activating nuclear factor κB,” Molecular Pharmacology, vol. 53, no. 4, pp. 663–669, 1998. View at Google Scholar · View at Scopus
  48. V. Ramkumar, D. M. Hallam, and Z. Nie, “Adenosine, oxidative stress and cytoprotection,” Japanese Journal of Pharmacology, vol. 86, no. 3, pp. 265–274, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. F. A. Edwards, A. J. Gibb, and D. Colquhoun, “ATP receptor-mediated synaptic currents in the central nervous system,” Nature, vol. 359, no. 6391, pp. 144–147, 1992. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Ferrari, P. Chiozzi, S. Falzoni et al., “ATP-mediated cytotoxicity in microglial cells,” Neuropharmacology, vol. 36, no. 9, pp. 1295–1301, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. J. T. Neary, Y. Kang, Y. Bu, E. Yu, K. Akong, and C. M. Peters, “Mitogenic signaling by ATP/P2Y purinergic receptors in astrocytes: Involvement of a calcium-independent protein kinase C, extracellular signal-regulated protein kinase pathway distinct from the phosphatidylinositol-specific phospholipase C/calcium pathway,” The Journal of Neuroscience, vol. 19, no. 11, pp. 4211–4220, 1999. View at Google Scholar · View at Scopus
  52. C. Matute, I. Torre, F. Pérez-Cerdá et al., “P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis,” The Journal of Neuroscience, vol. 27, no. 35, pp. 9525–9533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. P. J. Davis, F. B. Davis, S. A. Mousa, M. K. Luidens, and H.-Y. Lin, “Membrane receptor for thyroid hormone: physiologic and pharmacologic implications,” Annual Review of Pharmacology and Toxicology, vol. 51, pp. 99–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. J. J. Ohisalo and J. E. Stouffer, “Adenosine, thyroid status and regulation of lipolysis,” Biochemical Journal, vol. 178, no. 1, pp. 249–251, 1979. View at Google Scholar · View at Scopus
  55. A. N. Bruno, R. S. Da Silva, C. D. Bonan, A. M. O. Battastini, M. L. M. Barreto-Chaves, and J. J. F. Sarkis, “Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development,” International Journal of Developmental Neuroscience, vol. 21, no. 7, pp. 401–408, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. A. N. Bruno, F. K. Ricachenevsky, D. Pochmann et al., “Hypothyroidism changes adenine nucleotide hydrolysis in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development,” International Journal of Developmental Neuroscience, vol. 23, no. 1, pp. 37–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. A. N. Bruno, G. P. Diniz, F. K. Ricachenevsky et al., “Hypo-and hyperthyroidism affect the ATP, ADP and AMP hydrolysis in rat hippocampal and cortical slices,” Neuroscience Research, vol. 52, no. 1, pp. 61–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. A. N. Bruno, F. U. Fontella, L. M. Crema et al., “Hyperthyroidism changes nociceptive response and ecto-nucleotidase activities in synaptosomes from spinal cord of rats in different phases of development,” Comparative Biochemistry and Physiology, vol. 140, no. 1, pp. 111–116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. A. N. Bruno, M. S. Carneiro-Ramos, A. Buffon et al., “Thyroid hormones alter the adenine nucleotide hydrolysis in adult rat blood serum,” BioFactors, vol. 37, no. 1, pp. 40–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Braganhol, A. N. Bruno, L. Bavaresco, M. L. M. Barreto-Chaves, J. J. F. Sarkis, and A. M. O. Battastini, “Neonatal hypothyroidism affects the adenine nucleotides metabolism in astrocyte cultures from rat brain,” Neurochemical Research, vol. 31, no. 4, pp. 449–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Guieu, J. C. Peragut, P. Roussel et al., “Adenosine and neuropathic pain,” Pain, vol. 68, no. 2-3, pp. 271–274, 1996. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Tsuda, S. Ueno, and K. Inoue, “Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice,” British Journal of Pharmacology, vol. 128, no. 7, pp. 1497–1504, 1999. View at Google Scholar · View at Scopus
  63. G. J. Keil II and G. E. DeLander, “Altered sensory behaviors in mice following manipulation of endogenous spinal adenosine neurotransmission,” European Journal of Pharmacology, vol. 312, no. 1, pp. 7–14, 1996. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Ding, P. Cesare, L. Drew, D. Nikitaki, and J. N. Wood, “ATP, P2X receptors and pain pathways,” Journal of the Autonomic Nervous System, vol. 81, no. 1-3, pp. 289–294, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. A. N. Bruno, D. Pochmann, F. K. Ricachenevsky et al., “Nociceptive response and adenine nucleotide hydrolysis in synaptosomes isolated from spinal cord of hypothyroid rats,” Neurochemical Research, vol. 30, no. 9, pp. 1155–1161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. R. R. M. Maran, B. Ravisankar, K. Ravichandran, G. Valli, J. Arunakaran, and M. M. Aruldhas, “Impact of neonatal onset hypothyroidism on Sertoli cell number, plasma and testicular interstitial fluid androgen binding protein concentration,” Endocrine Research, vol. 25, no. 3-4, pp. 307–322, 1999. View at Google Scholar · View at Scopus
  67. E. A. Jannini, S. Ulisse, and M. D'Armiento, “Thyroid hormone and male gonadal function,” Endocrine Reviews, vol. 16, no. 4, pp. 443–459, 1995. View at Google Scholar · View at Scopus
  68. C. Longcope, L. E. Braverman, and R. D. Utiger, “The male and female reproductive systems in thyrotoxicosis—the male and female reproductive systems in hypothyroidism,” The Thyroid, pp. 828–1055, 1991. View at Google Scholar
  69. L. Monaco, D. A. DeManno, M. W. Martin, and M. Conti, “Adenosine inhibition of the hormonal response in the Sertoli cell is reversed by pertussis toxin,” Endocrinology, vol. 122, no. 6, pp. 2692–2698, 1988. View at Google Scholar · View at Scopus
  70. M. Conti, C. Boitani, D. Demanno, S. Migliaccio, L. Monaco, and C. Szymeczek, “Characterization and function of adenosine receptors in the testis,” Annals of the New York Academy of Sciences, vol. 564, pp. 39–47, 1989. View at Google Scholar · View at Scopus
  71. A. Filippini, A. Riccioli, P. De Cesaris et al., “Activation of inositol phospholipid turnover and calcium signaling in rat Sertoli cells by P2-purinergic receptors: modulation of follicle-stimulating hormone responses,” Endocrinology, vol. 134, no. 3, pp. 1537–1545, 1994. View at Publisher · View at Google Scholar · View at Scopus
  72. W. H. Ko, H. C. Chan, S. B. Chew, and P. Y. D. Wong, “Regulated anion secretion in cultured epithelia from Sertoli cells of immature rats,” Journal of Physiology, vol. 512, no. 2, pp. 471–480, 1998. View at Publisher · View at Google Scholar · View at Scopus
  73. S. B. Meroni, D. F. Cánepa, E. H. Pellizzari, H. F. Schteingart, and S. B. Cigorraga, “Effects of purinergic agonists on aromatase and gammaglutamyl transpeptidase activities and on transferrin secretion in cultured Sertoli cells,” Journal of Endocrinology, vol. 157, no. 2, pp. 275–283, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. S. B. Coade and J. D. Pearson, “Metabolism of adenine nucleotides in human blod,” Circulation Research, vol. 65, no. 3, pp. 531–537, 1989. View at Google Scholar · View at Scopus
  75. S. Mamiya, M. Hagiwara, S. Inoue, and H. Hidaka, “Thyroid hormones inhibit platelet function and myosin light chain kinase,” The Journal of Biological Chemistry, vol. 264, no. 15, pp. 8575–8579, 1989. View at Google Scholar · View at Scopus
  76. R. Masunaga, A. Nagasaka, A. Nakai et al., “Alteration of platelet aggregation in patients with thyroid disorders,” Metabolism, vol. 46, no. 10, pp. 1128–1131, 1997. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Erem, H. Kavgaci, H. Ersöz et al., “Blood coagulation and fibrinolytic activity in hypothyroidism,” International Journal of Clinical Practice, vol. 57, no. 2, pp. 78–81, 2003. View at Google Scholar · View at Scopus
  78. J. D. Wilson and D. W. Foster, “The thyroid gland,” Endocrinology, pp. 682–815, 1985. View at Google Scholar
  79. A. N. Bruno, D. Pochmann, F. K. Ricachenevsky, C. D. Bonan, M. L. M. Barreto-Chaves, and J. J. F. Sarkis, “5′-nucleotidase activity is altered by hypo- and hyperthyroidism in platelets from adult rats,” Platelets, vol. 16, no. 1, pp. 25–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. M. L. M. Barreto-Chaves, M. S. Carneiro-Ramos, G. Cotomacci, M. B. C. Júnior, and J. J. F. Sarkis, “E-NTPDase 3 (ATP diphosphohydrolase) from cardiomyocytes, activity and expression are modulated by thyroid hormone,” Molecular and Cellular Endocrinology, vol. 251, no. 1-2, pp. 49–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Cotomacci, J. J. Sarkis, C. R. Fürstenaua, and M. L. Barreto-Chaves, “Thyroid hormones are involved in 5'-nucleotidase modulation in soluble fraction of cardiac tissue,” Life Science, vol. 91, no. 3-4, pp. 137–142, 2012. View at Publisher · View at Google Scholar
  82. L. Willems, M. E. Reichelt, J. G. Molina et al., “Effects of adenosine deaminase and A1 receptor deficiency in normoxic and ischaemic mouse hearts,” Cardiovascular Research, vol. 71, no. 1, pp. 79–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Kemeny-Beke, A. Jakab, J. Zsuga et al., “Adenosine deaminase inhibition enhances the inotropic response mediated by A1 adenosine receptor in hyperthyroid guinea pig atrium,” Pharmacological Research, vol. 56, no. 2, pp. 124–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Mubagwa, K. Mullane, and W. Flameng, “Role of adenosine in the heart and circulation,” Cardiovascular Research, vol. 32, no. 5, pp. 797–813, 1996. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Balas, M. Arad, B. Rabinowitz, and A. Shainberg, “Modulation of cardiac A1-adenosine receptors in rats following treatment with agents affecting heart rate,” Molecular and Cellular Biochemistry, vol. 231, no. 1-2, pp. 107–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Solini, S. Cuccato, D. Ferrari et al., “Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease?” Endocrinology, vol. 149, no. 1, pp. 389–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. L.-Q. Gu, F.-Y. Li, L. Zhao et al., “Association of XIAP and P2X7 receptor expression with lymph node metastasis in papillary thyroid carcinoma,” Endocrine, vol. 38, no. 2, pp. 276–282, 2010. View at Publisher · View at Google Scholar · View at Scopus