Table of Contents Author Guidelines Submit a Manuscript
Journal of Transplantation
Volume 2010, Article ID 698594, 6 pages
http://dx.doi.org/10.1155/2010/698594
Review Article

Bortezomib in Kidney Transplantation

1Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
2Division of Nephrology, Baylor College of Medicine, Houston, TX 77030, USA
3Department of Medicine, The Kidney Institute and The Methodist Hospital, Houston, TX 77030, USA
4Division of Nephrology, The Kidney Institute and The Methodist Hospital, Houston, TX 77030, USA
5Department of Surgery, The Methodist Hospital, Weill Cornell University, Houston, TX 77030, USA
6Department of Pharmacy, The Methodist Hospital, Weill Cornell University, Houston, TX 77030, USA

Received 27 July 2010; Accepted 9 September 2010

Academic Editor: H. Kreis

Copyright © 2010 Rajeev Raghavan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Wolfe, V. B. Ashby, E. L. Milford et al., “Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant,” New England Journal of Medicine, vol. 341, no. 23, pp. 1725–1730, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. A. A. Vo, A. Peng, M. Toyoda et al., “Use of intravenous immune globulin and rituximab for desensitization of highly HLA-sensitized patients awaiting kidney transplantation,” Transplantation, vol. 89, no. 9, pp. 1095–1102, 2010. View at Publisher · View at Google Scholar · View at PubMed
  3. R. A. Montgomery, “Renal transplantation across HLA and ABO antibody barriers: integrating paired donation into desensitization protocols,” American Journal of Transplantation, vol. 10, no. 3, pp. 449–457, 2010. View at Publisher · View at Google Scholar · View at PubMed
  4. US Renal Data System, “USRDS 2009 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States,” Chapter 7, page 292, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md, USA, 2009.
  5. B. L. Kasiske, M. G. Zeier, J. C. Craig et al., “KDIGO clinical practice guideline for the care of kidney transplant recipients,” American Journal of Transplantation, vol. 9, supplement 3, pp. S1–S157, 2009. View at Google Scholar
  6. D. B. Tyan, V. A. Li, L. Czer, A. Trento, and S. C. Jordan, “Intravenous immunoglobulin suppression of HLA alloantibody in highly sensitized transplant candidates and transplantation with a histoincompatible organ,” Transplantation, vol. 57, no. 4, pp. 553–562, 1994. View at Google Scholar · View at Scopus
  7. R. A. Montgomery, A. A. Zachary, L. C. Racusen et al., “Plasmapheresis and intravenous immune globulin provides effective rescue therapy for refractory humoral rejection and allows kidneys to be successfully transplanted into cross-match-positive recipients,” Transplantation, vol. 70, no. 6, pp. 887–895, 2000. View at Google Scholar · View at Scopus
  8. M. D. Stegall and J. M. Gloor, “Deciphering antibody-mediated rejection: new insights into mechanisms and treatment,” Current Opinion in Organ Transplantation, vol. 15, no. 1, pp. 8–10, 2010. View at Publisher · View at Google Scholar · View at PubMed
  9. P. I. Terasaki, “Humoral theory of transplantation,” American Journal of Transplantation, vol. 3, no. 6, pp. 665–673, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Lefaucheur, D. Nochy, J. Andrade et al., “Comparison of combination plasmapheresis/IVIg/Anti-CD20 versus high-dose ivig in the treatment of antibody-mediated rejection,” American Journal of Transplantation, vol. 9, no. 5, pp. 1099–1107, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. S. Jordan, C. Cunningham-Rundles, and R. McEwanc, “Utility of intravenous immune globulin in kidney transplantation: efficacy, safety, and cost implications,” American Journal of Transplantation, vol. 3, no. 6, pp. 653–664, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. H. E. Adrogue, L. Soltero, G. A. Land, V. Ramanathan, L. D. Truong, and W. N. Suki, “Immunoglobulin therapy for plasma cell-rich rejection in the renal allograft,” Transplantation, vol. 82, no. 4, pp. 567–569, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. E. J. Ramos, H. S. Pollinger, M. D. Stegall, J. M. Gloor, A. Dogan, and J. P. Grande, “The effect of desensitization protocols on human splenic B-cell populations in vivo,” American Journal of Transplantation, vol. 7, no. 2, pp. 402–407, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. J. Everly, J. J. Everly, B. Susskind et al., “Bortezomib provides effective therapy for antibody- and cell-mediated acute rejection,” Transplantation, vol. 86, no. 12, pp. 1754–1761, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. H. L. Trivedi, P. I. Terasaki, A. Feroz et al., “Abrogation of Anti-HLA antibodies via proteasome inhibition,” Transplantation, vol. 87, no. 10, pp. 1555–1561, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. D. K. Perry, J. M. Burns, H. S. Pollinger et al., “Proteasome inhibition causes apoptosis of normal human plasma cells preventing alloantibody production,” American Journal of Transplantation, vol. 9, no. 1, pp. 201–209, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. Idica, H. Kaneku, M. J. Everly et al., “Elimination of post-transplant donor-specific HLA antibodies with bortezomib,” Clinical transplants, pp. 229–239, 2008. View at Google Scholar · View at Scopus
  18. M. Wahrmann, M. Haidinger, G. F. Körmöczi et al., “Effect of the proteasome inhibitor bortezomib on humoral immunity in two presensitized renal transplant candidates,” Transplantation, vol. 89, no. 11, pp. 1385–1390, 2010. View at Publisher · View at Google Scholar · View at PubMed
  19. R. C. Walsh, J. J. Everly, P. Brailey et al., “Proteasome inhibitor-based primary therapy for antibody-mediated renal allograft rejection,” Transplantation, vol. 89, no. 3, pp. 277–284, 2010. View at Publisher · View at Google Scholar · View at PubMed
  20. R. Sberro-Soussan, J. Zuber, C. Suberbielle-Boissel et al., “Bortezomib as the sole post-renal transplantation desensitization agent does not decrease donor-specific anti-HLA antibodies,” American Journal of Transplantation, vol. 10, no. 3, pp. 681–686, 2010. View at Publisher · View at Google Scholar · View at PubMed
  21. J. F. San Miguel, R. Schlag, N. K. Khuageva et al., “Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma,” New England Journal of Medicine, vol. 359, no. 9, pp. 906–917, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. P. M. Voorhees, E. C. Dees, B. O'Neil, and R. Z. Orlowski, “The proteasome as a target for cancer therapy,” Clinical Cancer Research, vol. 9, no. 17, pp. 6316–6325, 2003. View at Google Scholar · View at Scopus
  23. A. Durrbach, H. Francois, S. Beaudreuil, A. Jacquet, and B. Charpentier, “Advances in immunosuppression for renal transplantation,” Nature Reviews Nephrology, vol. 6, no. 3, pp. 160–167, 2010. View at Publisher · View at Google Scholar · View at PubMed
  24. K. Neubert, S. Meister, K. Moser et al., “The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis,” Nature Medicine, vol. 14, no. 7, pp. 748–755, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. “Velcade (bortezomib) package insert,” Millenium Pharmaceuticals, Cambridge, Mass, USA, 2009.
  26. D. E. Reece, D. Sullivan, S. Lonial et al., “Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma,” Cancer Chemotherapy and Pharmacology. Epub ahead of print.
  27. K. Venkatakrishnan, M. Rader, R. K. Ramanathan et al., “Effect of the CYP3A inhibitor ketoconazole on the pharmacokinetics and pharmacodynamics of bortezomib in patients with advanced solid tumors: a prospective, multicenter, open-label, randomized, two-way crossover drug-drug interaction study,” Clinical Therapeutics, vol. 31, part 2, pp. 2444–2458, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. G. Perrone, T. Hideshima, H. Ikeda et al., “Ascorbic acid inhibits antitumor activity of bortezomib in vivo,” Leukemia, vol. 23, no. 9, pp. 1679–1686, 2009. View at Google Scholar · View at Scopus
  29. P. G. Richardson, B. Barlogie, J. Berenson et al., “A phase 2 study of Bortezomib in relapsed, refractory myeloma,” New England Journal of Medicine, vol. 348, no. 26, pp. 2609–2617, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. R. C. Walsh, R. Shields, S. Safdar et al., “Toxicity profile of proteasome inhibitor-based antihumoral therapy in renal transplant candidates and recipients,” American Journal of Transplantation, vol. 10, supplement 4, p. 171, 2010, abstract. View at Google Scholar
  31. R. Raghavan, A. Jeroudi, K. Achkar et al., “Bortezomib in kidney transplant desensitization: a case report,” Clinical transplants, pp. 339–342, 2009. View at Google Scholar