Table of Contents Author Guidelines Submit a Manuscript
Journal of Transplantation
Volume 2013 (2013), Article ID 521369, 19 pages
http://dx.doi.org/10.1155/2013/521369
Review Article

Inflammatory Signalling Associated with Brain Dead Organ Donation: From Brain Injury to Brain Stem Death and Posttransplant Ischaemia Reperfusion Injury

1Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, QLD, Australia
2Department of Emergency Medicine, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, Australia

Received 8 June 2012; Revised 19 January 2013; Accepted 22 January 2013

Academic Editor: Gaetano Ciancio

Copyright © 2013 Ryan P. Watts et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Organ, “Procurement and Transplantation Network,” Organ by Status, 2011, http://optn.transplant.hrsa.gov/.
  2. M. A. Fink, S. R. Berry, P. J. Gow et al., “Risk factors for liver transplantation waiting list mortality,” Journal of Gastroenterology and Hepatology, vol. 22, no. 1, pp. 119–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. N. R. Banner, C. A. Rogers, R. S. Bonser et al., “Effect of heart transplantation on survival in ambulatory and decompensated heart failure,” Transplantation, vol. 96, no. 11, article 8, 2008. View at Google Scholar
  4. A. Reed, G. I. Snell, C. McLean, and T. J. Williams, “Outcomes of patients with interstitial lung disease referred for lung transplant assessment,” Internal Medicine Journal, vol. 36, no. 7, pp. 423–430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. I. De Vleeschauwer, S. Wauters, L. J. Dupont et al., “Medium-term outcome after lung transplantation is comparable between brain-dead and cardiac-dead donors,” Journal of Heart and Lung Transplantation, vol. 30, no. 9, pp. 975–981, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S.-T. Lee, K. Chu, K. H. Jung et al., “Cholinergic anti-inflammatory pathway in intracerebral hemorrhage,” Brain Research, vol. 1309, pp. 164–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. W. N. Nijboer, T. A. Schuurs, J. A. B. Van Der Hoeven et al., “Effect of brain death on gene expression and tissue activation in human donor kidneys,” Transplantation, vol. 78, no. 7, pp. 978–986, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. G. H. Naderi, D. Mehraban, S. M. Kazemeyni, M. Darvishi, and A. H. Latif, “Living or deceased donor kidney transplantation: a comparison of results and survival rates among Iranian patients,” Transplantation Proceedings, vol. 41, no. 7, pp. 2772–2774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. C. Anyanwu, N. R. Banner, R. Radley-Smith, A. Khaghani, and M. H. Yacoub, “Long-term results of cardiac transplantation from live donors: the domino heart transplant,” Journal of Heart and Lung Transplantation, vol. 21, no. 9, pp. 971–975, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Khaghani, E. J. Birks, A. C. Anyanwu, and N. R. Banner, “Heart transplantation from live donors: ‘Domino procedure’,” Journal of Heart and Lung Transplantation, vol. 23, no. 9, supplement 1, pp. S257–S259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Manning, S. Pham, S. Li et al., “Interleukin-10 delivery via mesenchymal stem cells: a novel gene therapy approach to prevent lung ischemia-reperfusion injury,” Human Gene Therapy, vol. 21, no. 6, pp. 713–727, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Damman, M. R. Daha, W. J. Van Son, H. G. Leuvenink, R. J. Ploeg, and M. A. Seelen, “Crosstalk between complement and toll-like receptor activation in relation to donor brain death and renal ischemia-reperfusion injury,” American Journal of Transplantation, vol. 11, no. 4, pp. 660–669, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. T. Weaver, L. E. Harrington, P. R. Mangan, M. Gavrieli, and K. M. Murphy, “Th17: an effector CD4 T cell lineage with regulatory T cell ties,” Immunity, vol. 24, no. 6, pp. 677–688, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Deknuydt, G. Bioley, D. Valmori, and M. Ayyoub, “IL-1β and IL-2 convert human Treg into TH17 cells,” Clinical Immunology, vol. 131, no. 2, pp. 298–307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J.-Q. Li, H. Z. Qi, Z. J. He et al., “Cytoprotective effects of human interleukin-10 gene transfer against necrosis and apoptosis induced by hepatic cold ischemia/reperfusion injury,” Journal of Surgical Research, vol. 157, no. 1, pp. e71–e78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. H. Y. Wong, C. N. Jenne, W. Y. Lee, C. Léger, and P. Kubes, “Functional innervation of hepatic iNKT cells is immunosuppressive following stroke,” Science, vol. 334, no. 6052, pp. 101–105, 2011. View at Google Scholar
  17. P. P. Wadia and A. R. Tambur, “Yin and yan of cytokine regulation in solid organ graft rejection and tolerance,” Clinics in Laboratory Medicine, vol. 28, no. 3, pp. 469–479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Nakajima, V. Palchevsky, D. L. Perkins, J. A. Belperio, and P. W. Finn, “Lung transplantation: infection, inflammation, and the microbiome,” Seminars in Immunopathology, vol. 33, no. 2, pp. 135–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. D. J. Huss, R. C. Winger, H. Peng, Y. Yang, M. K. Racke, and A. E. Lovett-Racke, “TGF-β enhances effector Th1 cell activation but promotes self-regulation via IL-10,” Journal of Immunology, vol. 184, no. 10, pp. 5628–5636, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Itoh, N. Kimura, R. C. Axtell et al., “Interleukin-17 accelerates allograft rejection by suppressing regulatory T cell expansion,” Circulation, vol. 124, supplement 11, pp. S187–S196, 2011. View at Publisher · View at Google Scholar
  21. E. A. Kastelijn, G. T. Rijkers, C. H. Van Moorsel et al., “Systemic and exhaled cytokine and chemokine profiles are associated with the development of bronchiolitis obliterans syndrome,” The Journal of Heart and Lung Transplantation, vol. 29, no. 9, pp. 997–1008, 2010. View at Google Scholar · View at Scopus
  22. C. Atkinson, J. C. Varela, and S. Tomlinson, “Complement-dependent inflammation and injury in a murine model of brain dead donor hearts,” Circulation Research, vol. 105, no. 11, pp. 1094–1101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Yoshida, T. Yoshikawa, Y. Nakamura et al., “Interactions of neutrophils and endothelial cells under low flow conditions in vitro,” Shock, vol. 8, no. 2, pp. 125–130, 1997. View at Google Scholar · View at Scopus
  24. T. Lattmann, M. Hein, S. Horber et al., “Activation of pro-inflammatory and anti-inflammatory cytokines in host organs during chronic allograft rejection: role of endothelin receptor signaling,” American Journal of Transplantation, vol. 5, no. 5, pp. 1042–1049, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. H.-O. Pae, G. S. Oh, B. M. Choi et al., “Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production,” Journal of Immunology, vol. 172, no. 8, pp. 4744–4751, 2004. View at Google Scholar · View at Scopus
  26. M. Ishizaki, T. Akimoto, R. Muromoto et al., “Involvement of tyrosine kinase-2 in both the IL-12/Th1 and IL-23/Th17 axes in vivo,” Journal of Immunology, vol. 187, no. 1, pp. 181–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Harden, T. Gu, M. O. Kilinc, R. B. Rowswell-Turner, L. P. Virtuoso, and N. K. Egilmez, “Dichotomous effects of IFN-γ on dendritic cell function determine the extent of IL-12 - driven antitumor T cell immunity,” Journal of Immunology, vol. 187, no. 1, pp. 126–132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Ueno, A. Yamada, T. Ito et al., “Role of nuclear factor of activated T cell (NFAT) transcription factors in skin and vascularized cardiac allograft rejection,” Transplantation, vol. 92, no. 5, pp. e26–e27, 2011. View at Google Scholar
  29. X. Xiong, G. E. Barreto, L. Xu, Y. B. Ouyang, X. Xie, and R. G. Giffard, “Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia,” Stroke, vol. 42, no. 7, pp. 2026–2032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. G. L. Theodorou, S. Marousi, J. Ellul et al., “T helper 1 (Th1)/Th2 cytokine expression shift of peripheral blood CD4+ and CD8+ T cells in patients at the post-acute phase of stroke,” Clinical and Experimental Immunology, vol. 152, no. 3, pp. 456–463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Hensler, S. Sauerland, P. Riess et al., “The effect of additional brain injury on systemic interleukin (IL)-10 and IL-13 levels in trauma patients,” Inflammation Research, vol. 49, no. 10, pp. 524–528, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. F. D. Finkelman, I. M. Katona, J. F. Urban Jr. et al., “IL-4 is required to generate and sustain in vivo IgE responses,” Journal of Immunology, vol. 141, no. 7, pp. 2335–2341, 1988. View at Google Scholar
  33. C. Wang, S. S. Tay, G. T. Tran et al., “Donor IL-4-treatment induces alternatively activated liver macrophages and IDO-expressing NK cells and promotes rat liver allograft acceptance,” Transplant Immunology, vol. 22, no. 3-4, pp. 172–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Bansal, C. M. Wong, L. Liu, Y. J. Suzuki et al., “Oxidant signaling for interleukin-13 gene expression in lung smooth muscle cells,” Free Radical Biology and Medicine, vol. 52, no. 9, pp. 1552–1559, 2012. View at Google Scholar
  35. M. Sandovici, L. E. Deelman, H. van Goor, W. Helfrich, D. de Zeeuw, and R. H. Henning, “Adenovirus-mediated interleukin-13 gene therapy attenuates acute kidney allograft injury,” The Journal of Gene Medicine, vol. 9, no. 12, pp. 1024–1032, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Corren, “Inhibition of interleukin-5 for the treatment of eosinophilic diseases,” Discovery Medicine, vol. 13, no. 71, pp. 305–312, 2012. View at Google Scholar
  37. T. Fujisawa, R. Abu-Ghazaleh, H. Kita, C. J. Sanderson, and G. J. Gleich, “Regulatory effect of cytokines on eosinophil degranulation,” Journal of Immunology, vol. 144, no. 2, pp. 642–646, 1990. View at Google Scholar · View at Scopus
  38. L. Z. Grund, E. N. Komegae, M. Lopes-Ferreira, and C. Lima, “IL-5 and IL-17A are critical for the chronic IgE response and differentiation of long-lived antibody-secreting cells in inflamed tissues,” Cytokine, vol. 59, no. 2, pp. 335–351, 2012. View at Google Scholar
  39. S. M. Knoblach and A. I. Faden, “Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury,” Experimental Neurology, vol. 153, no. 1, pp. 143–151, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. D. S. Nath, H. Ilias Basha, V. Tiriveedhi et al., “Characterization of immune responses to cardiac self-antigens myosin and vimentin in human cardiac allograft recipients with antibody-mediated rejection and cardiac allograft vasculopathy,” Journal of Heart and Lung Transplantation, vol. 29, no. 11, pp. 1277–1285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. X. C. Liu, A. Zhai, J. Q. Li, and H. Z. Qi, “Interleukin-23 promotes natural killer T-cell production of IL-17 during rat liver transplantation,” Transplantation Proceedings, vol. 43, no. 5, pp. 1962–1966, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Laan, Z. H. Cui, H. Hoshino et al., “Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways,” Journal of Immunology, vol. 162, no. 4, pp. 2347–2352, 1999. View at Google Scholar
  43. T. Shichita, Y. Sugiyama, H. Ooboshi et al., “Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury,” Nature Medicine, vol. 15, no. 8, pp. 946–950, 2009. View at Publisher · View at Google Scholar
  44. J. Parrish-Novak, S. R. Dillon, A. Nelson et al., “Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function,” Nature, vol. 408, no. 6808, pp. 57–63, 2000. View at Google Scholar
  45. M. Hagn, K. Sontheimer, K. Dahlke et al., “Human B cells differentiate into granzyme B-secreting cytotoxic B lymphocytes upon incomplete T-cell help,” Immunology and Cell Biology, vol. 90, no. 4, pp. 457–467, 2012. View at Publisher · View at Google Scholar
  46. J. Scheller, A. Chalaris, D. Schmidt-Arras, and S. Rose-John, “The pro- and anti-inflammatory properties of the cytokine interleukin-6,” Biochimica et Biophysica Acta, vol. 1813, no. 5, pp. 878–888, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Akdis, “The cellular orchestra in skin allergy; Are differences to lung and nose relevant?” Current Opinion in Allergy and Clinical Immunology, vol. 10, no. 5, pp. 443–451, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Chen, D. Li, J. Y. S. Tsang et al., “PPAR-γ signaling and IL-5 inhibition together prevent chronic rejection of MHC Class IImismatched cardiac grafts,” Journal of Heart and Lung Transplantation, vol. 30, no. 6, pp. 698–706, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Eulenfeld et al., “Interleukin-6 signalling: more than Jaks and STATs,” European Journal of Cell Biology, vol. 91, no. 6-7, pp. 486–495, 2012. View at Google Scholar
  50. G. Wang, A. Zhong, S. Wang, N. Dong, Z. Sun, and J. Xia, “Retinoic acid attenuates acute heart rejection by increasing regulatory t cell and repressing differentiation of th17 cell in the presence of TGF-β,” Transplant International, vol. 23, no. 10, pp. 986–997, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. D. C. Neujahr and C. P. Larsen, “Regulatory T cells in lung transplantation-an emerging concept,” Seminars in Immunopathology, vol. 33, no. 2, pp. 117–127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. Organ Procurement and Transplantation Network, Deceased Donors Recovered in the U.S. by Cause of Death, 2011, http://optn.transplant.hrsa.gov/latestData/rptData.asp.
  53. K. Inaba, B. C. Branco, L. Lam et al., “Organ donation and time to procurement: late is not too late,” Journal of Trauma, vol. 68, no. 6, pp. 1362–1366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Lee, M. Shin, E. Kim et al., “Donor characteristics associated with reduced survival of transplanted kidney grafts in Korea,” Transplantation Proceedings, vol. 42, no. 3, pp. 778–781, 2010. View at Google Scholar · View at Scopus
  55. M. Zukowski, R. Bohatyrewicz, J. Biernawska et al., “Cause of death in multiorgan donors and its relation to the function of transplanted kidneys,” Transplantation Proceedings, vol. 41, no. 8, pp. 2972–2974, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Wauters, G. M. Verleden, A. Belmans et al., “Donor cause of brain death and related time intervals: does it affect outcome after lung transplantation?” European Journal of Cardio-thoracic Surgery, vol. 39, no. 4, pp. e68–e76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. J. S. Ganesh, C. A. Rogers, N. R. Banner, and R. S. Bonser, “Donor cause of death and medium-term survival after heart transplantation: a United Kingdom national study,” Journal of Thoracic and Cardiovascular Surgery, vol. 129, no. 5, pp. 1153–1159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Godino, M. Lander, A. Cacciatore, S. Perez-Protto, and R. Mizraji, “Ventricular dysfunction associated with brain trauma is cause for exclusion of young heart donors,” Transplantation Proceedings, vol. 42, no. 5, pp. 1507–1509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. S. J. Campbell, V. H. Perry, F. J. Pitossi et al., “Central nervous system injury triggers Hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver,” American Journal of Pathology, vol. 166, no. 5, pp. 1487–1497, 2005. View at Google Scholar · View at Scopus
  60. S. J. Campbell, Y. Jiang, A. E. M. Davis et al., “Immunomodulatory effects of etanercept in a model of brain injury act through attenuation of the acute-phase response,” Journal of Neurochemistry, vol. 103, no. 6, pp. 2245–2255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Lu, S. J. Goh, P. Y. L. Tng, Y. Y. Deng, E. A. Ling, and S. Moochhala, “Systemic inflammatory response following acute traumatic brain injury,” Frontiers in Bioscience, vol. 14, no. 10, pp. 3795–3813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Kitamura, M. Nomura, H. Shima et al., “Acute lung injury associated with systemic inflammatory response syndrome following subarachnoid hemorrhage: a survey by the shonan neurosurgical association,” Neurologia Medico-Chirurgica, vol. 50, no. 6, pp. 456–460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. A. K. H. Tam, D. Ilodigwe, J. Mocco et al., “Impact of systemic inflammatory response syndrome on vasospasm, cerebral infarction, and outcome after subarachnoid hemorrhage: exploratory analysis of CONSCIOUS-1 database,” Neurocritical Care, vol. 13, no. 2, pp. 182–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. S. J. Campbell, P. M. Hughes, J. P. Iredale et al., “CINC-1 is an acute-phase protein induced by focal brain injury causing leukocyte mobilization and liver injury,” The FASEB Journal, vol. 17, no. 9, pp. 1168–1170, 2003. View at Google Scholar · View at Scopus
  65. S.-T. Lee, K. Chu, K. H. Jung et al., “Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke,” Brain, vol. 131, no. 3, pp. 616–629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Adrie, M. Monchi, J. P. Fulgencio et al., “Immune status and apoptosis activation during brain death,” Shock, vol. 33, no. 4, pp. 353–362, 2010. View at Google Scholar · View at Scopus
  67. S. Hoeger, C. Bergstraesser, J. Selhorst et al., “Modulation of brain dead induced inflammation by vagus nerve stimulation,” American Journal of Transplantation, vol. 10, no. 3, pp. 477–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. A. J. Rostron, V. S. Avlonitis, D. M. Cork, D. S. Grenade, J. A. Kirby, and J. H. Dark, “Hemodynamic resuscitation with arginine vasopressin reduces lung injury after brain death in the transplant donor,” Transplantation, vol. 85, no. 4, pp. 597–606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. Z.-D. Guo, X. C. Sun, and J. H. Zhang, “Mechanisms of early brain injury after SAH: matrix metalloproteinase 9,” Acta Neurochirurgica. Supplement, vol. 110, no. 1, pp. 63–65, 2011. View at Google Scholar · View at Scopus
  70. T. Frugier, M. C. Morganti-Kossmann, D. O'Reilly, and C. A. McLean, “In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury,” Journal of Neurotrauma, vol. 27, no. 3, pp. 497–507, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. E. Jeremitsky, L. Omert, C. M. Dunham, J. Protetch, and A. Rodriguez, “Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion,” Journal of Trauma, vol. 54, no. 2, pp. 312–319, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Graetz, A. Nagel, F. Schlenk, O. Sakowitz, P. Vajkoczy, and A. Sarrafzadeh, “High ICP as trigger of proinflammatory IL-6 cytokine activation in aneurysmal subarachnoid hemorrhage,” Neurological Research, vol. 32, no. 7, pp. 728–735, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Perez-Barcena, J. Ibáñez, M. Brell et al., “Lack of correlation among intracerebral cytokines, intracranial pressure, and brain tissue oxygenation in patients with traumatic brain injury and diffuse lesions,” Critical Care Medicine, vol. 39, no. 3, pp. 533–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. G. W. Hergenroeder, J. B. Redell, A. N. Moore, and P. K. Dash, “Biomarkers in the clinical diagnosis and management of traumatic brain injury,” Molecular Diagnosis and Therapy, vol. 12, no. 6, pp. 345–358, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. S. G. Rhind, N. T. Crnko, A. J. Baker et al., “Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients,” Journal of Neuroinflammation, vol. 7, no. 1, article 5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Shlosberg, M. Benifla, D. Kaufer, and A. Friedman, “Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury,” Nature Reviews Neurology, vol. 6, no. 7, pp. 393–403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Higashida, C. W. Kreipke, J. A. Rafols et al., “The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury: laboratory investigation,” Journal of Neurosurgery, vol. 114, no. 1, pp. 92–101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Wu, Z. Zhang, Y. Li et al., “Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats: correlation with brain edema,” Neurochemistry International, vol. 57, no. 3, pp. 248–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Wu, Z. Zhang, X. Hu et al., “Dynamic changes of inflammatory markers in brain after hemorrhagic stroke in humans: a postmortem study,” Brain Research, vol. 1342, pp. 111–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Miñambres, A. Cemborain, P. Sánchez-Velasco et al., “Correlation between transcranial interleukin-6 gradient and outcome in patients with acute brain injury,” Critical Care Medicine, vol. 31, no. 3, pp. 933–938, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. C. A. Skrabal, L. O. Thompson, E. V. Potapov et al., “Organ-specific regulation of pro-inflammatory molecules in heart, lung, and kidney following brain death,” Journal of Surgical Research, vol. 123, no. 1, pp. 118–125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. J. A. Amado, F. Lopez-Espadas, A. Vazquez-Barquero et al., “Blood levels of cytokines in brain-dead patients: relationship with circulating hormones and acute-phase reactants,” Metabolism, vol. 44, no. 6, pp. 812–816, 1995. View at Google Scholar · View at Scopus
  83. H. Offner, S. Subramanian, S. M. Parker, M. E. Afentoulis, A. A. Vandenbark, and P. D. Hurn, “Experimental stroke induces massive, rapid activation of the peripheral immune system,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 5, pp. 654–665, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. B. Maier, R. Lefering, M. Lehnert et al., “Early versus late onset of multiple organ failure is associated with differing patterns of plasma cytokine biomarker expression and outcome after severe trauma,” Shock, vol. 28, no. 6, pp. 668–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. L. G. Koudstaal, N. A. 'T Hart, P. J. Ottens et al., “Brain death induces inflammation in the donor intestine,” Transplantation, vol. 86, no. 1, pp. 148–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. H. Jedrzejowska-Szypulka, G. Straszak, M. Larysz-Brysz et al., “Interleukin-1β plays a role in the activation of peripheral leukocytes after blood-brain barrier rupture in the course of subarachnoid hemorrhage,” Current Neurovascular Research, vol. 7, no. 1, pp. 39–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. K. A. Hanafy, B. Grobelny, L. Fernandez et al., “Brain interstitial fluid TNF-α after subarachnoid hemorrhage,” Journal of the Neurological Sciences, vol. 291, no. 1-2, pp. 69–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. S. M. Lucas, N. J. Rothwell, and R. M. Gibson, “The role of inflammation in CNS injury and disease,” British Journal of Pharmacology, vol. 147, supplement 1, pp. S232–S240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. B. Maier, M. Lehnert, H. L. Laurer, A. E. Mautes, W. I. Steudel, and I. Marzi, “Delayed elevation of soluble tumor necrosis factor receptors p75 and p55 in cerebrospinal fluid and plasma after traumatic brain injury,” Shock, vol. 26, no. 2, pp. 122–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. P. Mellergård, O. Åneman, F. Sjögren, C. Säberg, and J. Hillman, “Differences in cerebral extracellular response of interleukin-1β, interleukin-6, and interleukin-10 after subarachnoid hemorrhage or severe head trauma in humans,” Neurosurgery, vol. 68, no. 1, pp. 12–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Weiss, K. Kotsch, M. Francuski et al., “Brain death activates donor organs and is associated with a worse I/R injury after liver transplantation,” American Journal of Transplantation, vol. 7, no. 6, pp. 1584–1593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. S. J. Campbell, I. Zahid, P. Losey et al., “Liver Kupffer cells control the magnitude of the inflammatory response in the injured brain and spinal cord,” Neuropharmacology, vol. 55, no. 5, pp. 780–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. K. M. McLean, J. Y. Duffy, P. K. Pandalai et al., “Glucocorticoids alter the balance between pro- and anti-inflammatory mediators in the myocardium in a porcine model of brain death,” Journal of Heart and Lung Transplantation, vol. 26, no. 1, pp. 78–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Katsuno, H. Yokota, Y. Yamamoto, and A. Teramoto, “Increased regional interleukin-4 during the acute stage of severe intracranial disorders,” Neurologia Medico-Chirurgica, vol. 46, no. 10, pp. 471–474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. M. S. Yang, E. J. Park, S. Sohn et al., “Interleukin-13 and -4 induce death of activated microglia,” GLIA, vol. 38, no. 4, pp. 273–280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. A. M. Planas, R. Gorina, and A. Chamorro, “Signalling pathways mediating inflammatory responses in brain ischaemia,” Biochemical Society Transactions, vol. 34, no. 6, pp. 1267–1270, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Hayakata, T. Shiozaki, O. Tasaki et al., “Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury,” Shock, vol. 22, no. 2, pp. 102–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. X.-Q. Wang, Y. P. Peng, J. H. Lu, B. B. Cao, and Y. H. Qiu, “Neuroprotection of interleukin-6 against NMDA attack and its signal transduction by JAK and MAPK,” Neuroscience Letters, vol. 450, no. 2, pp. 122–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. I. Dimopoulou, S. Korfias, U. Dafni et al., “Protein S-100b serum levels in trauma-induced brain death,” Neurology, vol. 60, no. 6, pp. 947–951, 2003. View at Google Scholar · View at Scopus
  100. A. Quintana, M. Giralt, A. Molinero, I. L. Campbell, M. Penkowa, and J. Hidalgo, “Analysis of the cerebral transcriptome in mice subjected to traumatic brain injury: importance of IL-6,” NeuroImmunoModulation, vol. 14, no. 3-4, pp. 139–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Damman, W. N. Nijboer, T. A. Schuurs et al., “Local renal complement C3 induction by donor brain death is associated with reduced renal allograft function after transplantation,” Nephrology Dialysis Transplantation, vol. 26, no. 7, pp. 2345–2354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Lv, Y. Liu, J. Zhang et al., “Roles of inflammation response in microglia cell through Toll-like receptors 2/interleukin-23/interleukin-17 pathway in cerebral ischemia/reperfusion injury,” Neuroscience, vol. 176, pp. 162–172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. F. Konoeda, T. Shichita, H. Yoshida et al., “Therapeutic effect of IL-12/23 and their signaling pathway blockade on brain ischemia model,” Biochemical and Biophysical Research Communications, vol. 402, no. 3, pp. 500–506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. D.-D. Wang, Y. F. Zhao, G. Y. Wang et al., “IL-17 potentiates neuronal injury induced by oxygen-glucose deprivation and affects neuronal IL-17 receptor expression,” Journal of Neuroimmunology, vol. 212, no. 1-2, pp. 17–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. A. P. Comellas and A. Briva, “Role of endothelin-1 in acute lung injury,” Translational Research, vol. 153, no. 6, pp. 263–271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. B. P. Persson, P. Rossi, E. Weitzberg, and A. Oldner, “Inhaled tezosentan reduces pulmonary hypertension in endotoxin-induced lung injury,” Shock, vol. 32, no. 4, pp. 427–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. D. Konrad, M. Haney, G. Johansson, M. Wanecek, E. Weitzberg, and A. Oldner, “Cardiac effects of endothelin receptor antagonism in endotoxemic pigs,” American Journal of Physiology, vol. 293, no. 2, pp. H988–H996, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. H. H. Leuchte, T. Meis, M. El-Nounou, J. Michalek, and J. Behr, “Inhalation of endothelin receptor blockers in pulmonary hypertension,” American Journal of Physiology, vol. 294, no. 4, pp. L772–L777, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. V. N. Kuklin, M. Y. Kirov, O. V. Evgenov et al., “Novel endothelin receptor antagonist attenuates endotoxin-induced lung injury in sheep,” Critical Care Medicine, vol. 32, no. 3, pp. 766–773, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Kallakuri, C. W. Kreipke, P. C. Schafer, S. M. Schafer, and J. A. Rafols, “Brain cellular localization of endothelin receptors A and B in a rodent model of diffuse traumatic brain injury,” Neuroscience, vol. 168, no. 3, pp. 820–830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. D. A. Chatfield, D. H. Brahmbhatt, T. Sharp, I. E. Perkes, J. G. Outrim, and D. K. Menon, “Juguloarterial endothelin-1 gradients after severe traumatic brain injury,” Neurocritical Care, vol. 14, no. 1, pp. 55–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. H. Vatter, J. Konczalla, and V. Seifert, “Endothelin related pathophysiology in cerebral vasospasm: what happens to the cerebral vessels?” Acta Neurochirurgica. Supplement, vol. 110, no. 1, pp. 177–180, 2011. View at Google Scholar · View at Scopus
  113. R. Salonia, P. E. Empey, S. M. Poloyac et al., “Endothelin-1 is increased in cerebrospinal fluid and associated with unfavorable outcomes in children after severe traumatic brain injury,” Journal of Neurotrauma, vol. 27, no. 10, pp. 1819–1825, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Sabri, J. Ai, and R. L. MacDonald, “Dissociation of vasospasm and secondary effects of experimental subarachnoid hemorrhage by clazosentan,” Stroke, vol. 42, no. 5, pp. 1454–1460, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. A. J. Sutherland, R. S. Ware, C. Winterford, and J. F. Fraser, “The endothelin axis and gelatinase activity in alveolar macrophages after brain-stem death injury: a pilot study,” Journal of Heart and Lung Transplantation, vol. 26, no. 10, pp. 1040–1047, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. B. Reel, G. Oktay, S. Ozkal et al., “MMP-2 and MMP-9 alteration in response to collaring in rabbits: the effects of endothelin receptor antagonism,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 14, no. 4, pp. 292–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. P. Rossi, B. Persson, P. J. M. Boels, A. Arner, E. Weitzberg, and A. Oldner, “Endotoxemic pulmonary hypertension is largely mediated by endothelin-induced venous constriction,” Intensive Care Medicine, vol. 34, no. 5, pp. 873–880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. H. Kimura, I. Gules, T. Meguro, and J. H. Zhang, “Cytotoxicity of cytokines in cerebral microvascular endothelial cell,” Brain Research, vol. 990, no. 1-2, pp. 148–156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  119. P. M. Cobelens, I. A. C. W. Tiebosch, R. M. Dijkhuizen et al., “Interferon-β attenuates lung inflammation following experimental subarachnoid hemorrhage,” Critical Care, vol. 14, no. 4, article R157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. V. I. Otto, U. E. Heinzel-Pleines, S. M. Gloor, O. Trentz, and T. Kossmann, “Morganti-Kossmann MCsICAM-1 and TNF-α induce MIP-2 with distinct kinetics in astrocytes and brain microvascular endothelial cells,” Journal of Neuroscience Research, vol. 60, no. 6, pp. 733–742, 2000. View at Google Scholar
  121. E. J. Birks, P. B. J. Burton, V. Owen et al., “Elevated tumor necrosis factor-α and interleukin-6 in myocardium and serum of malfunctioning donor hearts,” Circulation, vol. 102, no. 19, pp. III352–III358, 2000. View at Google Scholar · View at Scopus
  122. H. H. Wei, X. C. M. Lu, D. A. Shear et al., “NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats,” Journal of Neuroinflammation, vol. 6, no. 1, article 19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. J. A. Kellum, R. Venkataraman, D. Powner, M. Elder, G. Hergenroeder, and M. Carter, “Feasibility study of cytokine removal by hemoadsorption in brain-dead humans,” Critical Care Medicine, vol. 36, no. 1, pp. 268–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. T. Bartfai, M. Sanchez-Alavez, S. Andell-Jonsson et al., “Interleukin-1 system in CNS stress: seizures, fever, and neurotrauma,” Annals of the New York Academy of Sciences, vol. 1113, no. 1, pp. 173–177, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Basu, J. K. Krady, J. R. Enterline, and S. W. Levison, “Transforming growth factor β1 prevents IL-1β-induced microglial activation, whereas TNFα- and IL-6-stimulated activation are not antagonized,” GLIA, vol. 40, no. 1, pp. 109–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. R. Murugan, R. Venkataraman, A. S. Wahed et al., “Increased plasma interleukin-6 in donors is associated with lower recipient hospital-free survival after cadaveric organ transplantation,” Critical Care Medicine, vol. 36, no. 6, pp. 1810–1816, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. G. Plenz, H. Eschert, M. Erren et al., “The interleukin-6/interleukin-6-receptor system is activated in donor hearts,” Journal of the American College of Cardiology, vol. 39, no. 9, pp. 1508–1512, 2002. View at Publisher · View at Google Scholar · View at Scopus
  128. R. Murugan, R. Venkataraman, A. S. Wahed et al., “Preload responsiveness is associated with increased interleukin-6 and lower organ yield from brain-dead donors,” Critical Care Medicine, vol. 37, no. 8, pp. 2387–2393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. P. Gregoric, A. Sijacki, S. Stankovic et al., “SIRS score on admission and initial concentration of IL-6 as severe acute pancreatitis outcome predictors,” Hepato-Gastroenterology, vol. 58, no. 105, p. 263, 2011. View at Google Scholar · View at Scopus
  130. L. Wang, J. Quan, W. E. Johnston et al., “Age-dependent differences of interleukin-6 activity in cardiac function after burn complicated by sepsis,” Burns, vol. 36, no. 2, pp. 232–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. B. Maier, K. Schwerdtfeger, A. Mautes et al., “Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury,” Shock, vol. 15, no. 6, pp. 421–426, 2001. View at Google Scholar · View at Scopus
  132. A. J. Fisher, S. C. Donnelly, N. Hirani et al., “Elevated levels of interleukin-8 in donor lungs is associated with early graft failure after lung transplantation,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 1, pp. 259–265, 2001. View at Google Scholar · View at Scopus
  133. S. C. Donnelly, R. M. Strieter, S. L. Kunkel et al., “Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups,” The Lancet, vol. 341, no. 8846, pp. 643–647, 1993. View at Publisher · View at Google Scholar · View at Scopus
  134. E. Csuka, M. C. Morganti-Kossmann, P. M. Lenzlinger, H. Joller, O. Trentz, and T. Kossmann, “IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β1 and blood-brain barrier function,” Journal of Neuroimmunology, vol. 101, no. 2, pp. 211–221, 1999. View at Publisher · View at Google Scholar · View at Scopus
  135. M. C. Morganti-Kossman, P. M. Lenzlinger, V. Hans et al., “Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue,” Molecular Psychiatry, vol. 2, no. 2, pp. 133–136, 1997. View at Google Scholar · View at Scopus
  136. U. Malipiero, U. Koedel, W. Pfister, and A. Fontana, “Bacterial meningitis: the role of transforming growth factor-beta in innate immunity and secondary brain damage,” Neurodegenerative Diseases, vol. 4, no. 1, pp. 43–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. M. R. Douglas, M. Daniel, C. Lagord et al., “High CSF transforming growth factor b levels after subarachnoid haemorrhage: association with chronic communicating hydrocephalus,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 5, pp. 545–550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. T. Okamoto, S. Takahashi, E. Nakamura, K. Nagaya, T. Hayashi, and K. Fujieda, “Transforming growth factor-β1 induces matrix metalloproteinase-9 expression in human meningeal cells via ERK and Smad pathways,” Biochemical and Biophysical Research Communications, vol. 383, no. 4, pp. 475–479, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. Y. Oishi, Y. Nishimura, Y. Tanoue et al., “Endothelin-1 receptor antagonist prevents deterioration of left ventricular function and coronary flow reserve in brain-dead canine heart,” Journal of Heart and Lung Transplantation, vol. 24, no. 9, pp. 1354–1361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. R. Ferrera, G. Hadour, F. Tamion et al., “Brain death provokes very acute alteration in myocardial morphology detected by echocardiography: preventive effect of beta-blockers,” Transplant International, vol. 24, no. 3, pp. 300–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. R. V. Venkateswaran, V. Dronavalli, P. A. Lambert et al., “The proinflammatory environment in potential heart and lung donors: prevalence and impact of donor management and hormonal therapy,” Transplantation, vol. 88, no. 4, pp. 582–588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Catania, C. Lonati, A. Sordi, and S. Gatti, “Detrimental consequences of brain injury on peripheral cells,” Brain, Behavior, and Immunity, vol. 23, no. 7, pp. 877–884, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Valdivia, C. Chamorro, M. A. Romera, B. Balandín, and M. Pérez, “Effect of posttraumatic donor's disseminated intravascular coagulation in intrathoracic organ donation and transplantation,” Transplantation Proceedings, vol. 39, no. 7, pp. 2427–2428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. S. R. James, A. M. Ranasinghe, R. Venkateswaran, C. J. McCabe, J. A. Franklyn, and R. S. Bonser, “The effects of acute triiodothyronine therapy on myocardial gene expression in brain stem dead cardiac donors,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 3, pp. 1338–1343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. R. V. Venkateswaran, R. P. Steeds, D. W. Quinn et al., “The haemodynamic effects of adjunctive hormone therapy in potential heart donors: a prospective randomized double-blind factorially designed controlled trial,” European Heart Journal, vol. 30, no. 14, pp. 1771–1780, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. V. S. Avlonitis, C. H. Wigfield, J. A. Kirby, and J. H. Dark, “The hemodynamic mechanisms of lung injury and systemic inflammatory response following brain death in the transplant donor,” American Journal of Transplantation, vol. 5, no. 4 I, pp. 684–693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. A. Salim, M. Martin, C. Brown, H. Belzberg, P. Rhee, and D. Demetriades, “Complications of brain death: frequency and impact on organ retrieval,” American Surgeon, vol. 72, no. 5, pp. 377–381, 2006. View at Google Scholar · View at Scopus
  148. A. Salim, G. C. Velmahos, C. Brown, H. Belzberg, and D. Demetriades, “Aggressive organ donor management significantly increases the number of organs available for transplantation,” Journal of Trauma, vol. 58, no. 5, pp. 991–994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  149. H. Cushing, “Concerning a definite regulatory mechanism of the vaso-motor centre which controls blood pressure during cerebral compression,” The Johns Hopkins Hospital Bulletin, vol. 12, pp. 290–292, 1901. View at Google Scholar
  150. H. Cushing, “Some experimental and clinical observations concerning states of increased intracranial tension. The Mütter Lecture for 1901,” American Journal of Medical Sciences, vol. 124, pp. 375–400, 1902. View at Google Scholar
  151. C. Dictus, B. Vienenkoetter, M. Esmaeilzadeh, A. Unterberg, and R. Ahmadi, “Critical care management of potential organ donors: our current standard,” Clinical Transplantation, vol. 23, no. 21, pp. 2–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. H. Schrader, C. Hall, and N. N. Zwetnow, “Effects of prolonged supratentorial mass expansion on regional blood flow and cardiovascular parameters during the Cushing response,” Acta Neurologica Scandinavica, vol. 72, no. 3, pp. 283–294, 1985. View at Google Scholar · View at Scopus
  153. C. Gao, X. Liu, H. Shi et al., “Relationship between sympathetic nervous activity and inflammatory response after subarachnoid hemorrhage in a perforating canine model,” Autonomic Neuroscience, vol. 147, no. 1-2, pp. 70–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. R. Ferrera, M. Ovize, B. Claustrat, and G. Hadour, “Stable myocardial function and endocrine dysfunction during experimental brain death,” Journal of Heart and Lung Transplantation, vol. 24, no. 7, pp. 921–927, 2005. View at Publisher · View at Google Scholar · View at Scopus
  155. H. Marthol, T. Intravooth, J. Bardutzky, P. De Fina, S. Schwab, and M. J. Hilz, “Sympathetic cardiovascular hyperactivity precedes brain death,” Clinical Autonomic Research, vol. 20, no. 6, pp. 363–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. C. Chamorro, J. A. Falcón, and J. C. Michelena, “Controversial points in organ donor management,” Transplantation Proceedings, vol. 41, no. 8, pp. 3473–3475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. P. Herijgers, M. Borgers, and W. Flameng, “The effect of brain death on cardiovascular function in rats. Part I. Is the heart damaged?” Cardiovascular Research, vol. 38, no. 1, pp. 98–106, 1998. View at Publisher · View at Google Scholar · View at Scopus
  158. L. V. Borovikova, S. Ivanova, M. Zhang et al., “Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin,” Nature, vol. 405, no. 6785, pp. 458–462, 2000. View at Publisher · View at Google Scholar · View at Scopus
  159. M. A. Flierl, D. Rittirsch, B. A. Nadeau et al., “Phagocyte-derived catecholamines enhance acute inflammatory injury,” Nature, vol. 449, no. 7163, pp. 721–725, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. M. Takada, K. C. Nadeau, W. W. Hancock et al., “Effects of explosive brain death on cytokine activation of peripheral organs in the rat,” Transplantation, vol. 65, no. 12, pp. 1533–1542, 1998. View at Publisher · View at Google Scholar · View at Scopus
  161. V. S. Avlonitis, C. H. Wigfield, J. A. Kirby, and J. H. Dark, “Treatment of the brain-dead lung donor with aprotinin and nitric oxide,” Journal of Heart and Lung Transplantation, vol. 29, no. 10, pp. 1177–1184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. C. Zhu, J. Li, G. Zhang et al., “Brain death disrupts structure and function of pig liver,” Transplantation Proceedings, vol. 42, no. 3, pp. 733–736, 2010. View at Google Scholar · View at Scopus
  163. M. Cypel, H. Kaneda, J. C. Yeung et al., “Increased levels of interleukin-1β and tumor necrosis factor-α in donor lungs rejected for transplantation,” Journal of Heart and Lung Transplantation, vol. 30, no. 4, pp. 452–459, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. D. Kaminska, B. Tyran, O. Mazanowska et al., “Cytokine gene expression in kidney allograft biopsies after donor brain death and ischemia-reperfusion injury using in situ reverse-transcription polymerase chain reaction analysis,” Transplantation, vol. 84, no. 9, pp. 1118–1124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  165. J. Q. Li, H. Z. Qi, Z. J. He, W. Hu, Z. Z. Si, and Y. N. Li, “Induction of lymphocyte apoptosis in rat liver allograft by adenoviral gene transfection of human interleukin-10,” European Surgical Research, vol. 44, no. 3-4, pp. 133–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. W. N. Nijboer, P. J. Ottens, A. Van Dijk, H. Van Goor, R. J. Ploeg, and H. G. D. Leuvenink, “Donor pretreatment with carbamylated erythropoietin in a brain death model reduces inflammation more effectively than erythropoietin while preserving renal function,” Critical Care Medicine, vol. 38, no. 4, pp. 1155–1161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. C. F. Bulcao, K. M. D'Souza, R. Malhotra et al., “Activation of JAK-STAT and nitric oxide signaling as a mechanism for donor heart dysfunction,” Journal of Heart and Lung Transplantation, vol. 29, no. 3, pp. 346–351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. K. P. Kotsch, F. Ulrich, A. Reutzel-Selke et al., “Methylprednisolone therapy in deceased donors reduces inflammation in the donor liver and improves outcome after liver transplantation a prospective randomized controlled trial,” Annals of Surgery, vol. 248, no. 6, pp. 1042–1049, 2008. View at Publisher · View at Google Scholar · View at Scopus
  169. H. Kaneda, T. K. Waddell, M. De Perrot et al., “Pre-implantation multiple cytokine mRNA expression analysis of donor lung grafts predicts survival after lung transplantation in humans,” American Journal of Transplantation, vol. 6, no. 3, pp. 544–551, 2006. View at Publisher · View at Google Scholar · View at Scopus
  170. A. Loverre, C. Divella, G. Castellano et al., “T helper 1, 2 and 17 cell subsets in renal transplant patients with delayed graft function,” Transplant International, vol. 24, no. 3, pp. 233–242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  171. I. Inci, B. Erne, S. Arni et al., “Prevention of primary graft dysfunction in lung transplantation by N-acetylcysteine after prolonged cold ischemia,” Journal of Heart and Lung Transplantation, vol. 29, no. 11, pp. 1293–1301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. E. C. Lascano, A. Bertolotti, C. B. Gómez et al., “Failure of IL-8 to assess early reperfusion injury following lung transplantation of cardiac death donor pigs,” Transplant International, vol. 22, no. 5, pp. 574–582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. S. J. Zhang and S. Chen, “The influence of brain death on liver in rats,” Transplantation Proceedings, vol. 36, no. 7, pp. 1925–1927, 2004. View at Publisher · View at Google Scholar · View at Scopus
  174. M. Salama, O. Andrukhova, M. A. Hoda et al., “Concomitant endothelin-1 overexpression in lung transplant donors and recipients predicts primary graft dysfunction,” American Journal of Transplantation, vol. 10, no. 3, pp. 628–636, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. M. Kusaka, Y. Kuroyanagi, H. Kowa et al., “Genomewide expression profiles of rat model renal isografts from brain dead donors,” Transplantation, vol. 83, no. 1, pp. 62–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  176. S. Shiotani, M. Shimada, T. Suehiro et al., “Involvement of Rho-kinase in cold ischemia-reperfusion injury after liver transplantation in rats,” Transplantation, vol. 78, no. 3, pp. 375–382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  177. R. Tuuminen, S. Syrjälä, R. Krebs et al., “Donor simvastatin treatment abolishes rat cardiac allograft ischemia/reperfusion injury and chronic rejection through microvascular protection,” Circulation, vol. 124, no. 10, pp. 1138–1150, 2011. View at Google Scholar
  178. S. Ulukaya, E. Ulukaya, I. Alper, A. Yilmaztepe-Oral, and M. Kilic, “Soluble cytokeratin 18 biomarkers may provide information on the type of cell death during early ischemia and reperfusion periods of liver transplantation,” Clinical Transplantation, vol. 24, no. 6, pp. 848–854, 2010. View at Publisher · View at Google Scholar · View at Scopus
  179. Y. F. Xu, M. Liu, B. Peng et al., “Protective effects of SP600125 on renal ischemia-reperfusion injury in rats,” Journal of Surgical Research, vol. 169, no. 1, pp. e77–e84, 2011. View at Publisher · View at Google Scholar · View at Scopus
  180. M. L. Blagonravov, M. M. Azova, M. V. Onufriev, and V. A. Frolov, “Activities of some caspase cascade enzymes and myocardial contractility in experimental left ventricular focal ischemia,” Bulletin of Experimental Biology and Medicine, vol. 150, no. 6, pp. 672–675, 2011. View at Publisher · View at Google Scholar · View at Scopus
  181. C. Ballet, K. Renaudin, N. Degauque et al., “Indirect CD4+ TH1 response, antidonor antibodies and diffuse C4d graft deposits in long-term recipients conditioned by donor antigens priming,” American Journal of Transplantation, vol. 9, no. 4, pp. 697–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  182. M. Zhang, L. H. Michael, S. A. Grosjean, R. A. Kelly, M. C. Carroll, and M. L. Entman, “The role of natural IgM in myocardial ischemia-reperfusion injury,” Journal of Molecular and Cellular Cardiology, vol. 41, no. 1, pp. 62–67, 2006. View at Publisher · View at Google Scholar · View at Scopus
  183. A. E. Gelman, M. Okazaki, S. Sugimoto et al., “CCR2 regulates monocyte recruitment as well as CD4+ T h1 allorecognition after lung transplantation,” American Journal of Transplantation, vol. 10, no. 5, pp. 1189–1199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  184. D. K. de Vries, J. H. N. Lindeman, J. Ringers, M. E. J. Reinders, T. J. Rabelink, and A. F. M. Schaapherder, “Donor brain death predisposes human kidney grafts to a proinflammatory reaction after transplantation,” American Journal of Transplantation, vol. 11, no. 5, pp. 1064–1070, 2011. View at Publisher · View at Google Scholar · View at Scopus
  185. S. A. Hosgood, I. H. Mohamed, A. Bagul, and M. L. Nicholson, “Hypothermic machine perfusion after static cold storage does not improve the preservation condition in an experimental porcine kidney model,” British Journal of Surgery, vol. 98, no. 7, pp. 943–950, 2011. View at Publisher · View at Google Scholar · View at Scopus
  186. J. A. Duran, A. A. González, D. D. García et al., “Variation in the levels of inflammatory cytokines depending on ischemic time: effects on respiratory variables,” Transplantation Proceedings, vol. 41, no. 3, pp. 980–982, 2009. View at Publisher · View at Google Scholar · View at Scopus
  187. M. Ilmakunnas, K. Höckerstedt, H. Mäkisalo, S. Siitonen, H. Repo, and E. J. Pesonen, “Hepatic IL-8 release during graft procurement is associated with impaired graft function after human liver transplantation,” Clinical Transplantation, vol. 24, no. 1, pp. 29–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  188. H. E. Merry, P. S. Wolf, E. Fitzsullivan, J. C. Keech, and M. S. Mulligan, “Lipopolysaccharide pre-conditioning is protective in lung ischemia-reperfusion injury,” Journal of Heart and Lung Transplantation, vol. 29, no. 4, pp. 471–478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  189. A. Benson, S. Murray, P. Divakar et al., “Microbial infection-induced expansion of effector T cells overcomes the suppressive effects of regulatory T cells via an IL-2 deprivation mechanism,” The Journal of Immunology, vol. 188, no. 2, pp. 800–810, 2012. View at Google Scholar
  190. D. Jonigk, M. Merk, K. Hussein et al., “Obliterative airway remodeling: molecular evidence for shared pathways in transplanted and native lungs,” American Journal of Pathology, vol. 178, no. 2, pp. 599–608, 2011. View at Publisher · View at Google Scholar · View at Scopus
  191. B. Ke, X. D. Shen, C. R. Lassman, F. Gao, R. W. Busuttil, and J. W. Kupiec-Weglinski, “Cytoprotective and antiapoptotic effects of IL-13 in hepatic cold ischemia/reperfusion injury are heme oxygenase-1 dependent,” American Journal of Transplantation, vol. 3, no. 9, pp. 1076–1082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  192. L. Sun, T. Shi, H. Qiao et al., “Hepatic overexpression of heme oxygenase-1 improves liver allograft survival by expanding t regulatory cells,” Journal of Surgical Research, vol. 166, no. 2, pp. e187–e194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  193. M. Schaub, C. J. Ploetz, D. Gerbaulet et al., “Effect of dopamine on inflammatory status in kidneys of brain-dead rats,” Transplantation, vol. 77, no. 9, pp. 1333–1340, 2004. View at Publisher · View at Google Scholar · View at Scopus
  194. H. Zhou, J. Liu, P. Pan, D. Jin, W. Ding, and W. Li, “Carbon monoxide inhalation decreased lung injury via anti-inflammatory and anti-apoptotic effects in brain death rats,” Experimental Biology and Medicine, vol. 235, no. 10, pp. 1236–1243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  195. H. Zhou, H. Qian, J. Liu et al., “Protection against lung graft injury from brain-dead donors with carbon monoxide, biliverdin, or both,” Journal of Heart and Lung Transplantation, vol. 30, no. 4, pp. 460–466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  196. E. Sierra-Filardi, M. A. Vega, P. Sánchez-Mateos, A. L. Corbí, and A. Puig-Kröger, “Heme Oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPS-induced IL-10 release,” Immunobiology, vol. 215, no. 9-10, pp. 788–795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. B. Ke, X. D. Shen, Y. Zhai et al., “Heme oxygenase 1 mediates the immunomodulatory and antiapoptotic effects of interleukin 13 gene therapy in vivo and in vitro,” Human Gene Therapy, vol. 13, no. 15, pp. 1845–1857, 2002. View at Publisher · View at Google Scholar · View at Scopus
  198. F. W. Selck, P. Deb, and E. B. Grossman, “Deceased organ donor characteristics and clinical interventions associated with organ yield,” American Journal of Transplantation, vol. 8, no. 5, pp. 965–974, 2008. View at Publisher · View at Google Scholar · View at Scopus
  199. A. Salim, M. Martin, C. Brown, P. Rhee, D. Demetriades, and H. Belzberg, “The effect of a protocol of aggressive donor management: implications for the national organ donor shortage,” Journal of Trauma, vol. 61, no. 2, pp. 429–432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  200. J. D. Rosendale, H. M. Kauffman, M. A. McBride et al., “Aggressive pharmacologic donor management results in more transplanted organs,” Transplantation, vol. 75, no. 4, pp. 482–487, 2003. View at Publisher · View at Google Scholar · View at Scopus
  201. Critical Pathway for the Organ Donor, United Network for Organ Sharing, 2002, http://www.unos.org/docs/Critical_Pathway.pdf.
  202. A. Dare, A. Bartlett, and J. Fraser, “Critical care of the potential organ donor,” Current Neurology and Neuroscience Reports, vol. 12, no. 4, pp. 456–465, 2012. View at Google Scholar
  203. A. J. M. Lewis, A. J. Rostron, D. M. W. Cork, J. A. Kirby, and J. H. Dark, “Norepinephrine and arginine vasopressin increase hepatic but not renal inflammatory activation during hemodynamic resuscitation in a rodent model of brain-dead donors,” Experimental and Clinical Transplantation, vol. 7, no. 2, pp. 119–123, 2009. View at Google Scholar · View at Scopus
  204. M. Cypel, M. Liu, M. Rubacha et al., “Functional repair of human donor lungs by IL-10 gene therapy,” Science Translational Medicine, vol. 1, no. 4, article 4ra9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  205. M. R. Sadaria, P. D. Smith, D. A. Fullerton et al., “Cytokine expression profile in human lungs undergoing normothermic ex-vivo lung perfusion,” Annals of Thoracic Surgery, vol. 92, no. 2, pp. 478–484, 2011. View at Publisher · View at Google Scholar · View at Scopus
  206. T. Kakishita, T. Oto, S. Hori et al., “Suppression of inflammatory cytokines during ex vivo lung perfusion with an adsorbent membrane,” Annals of Thoracic Surgery, vol. 89, no. 6, pp. 1773–1779, 2010. View at Publisher · View at Google Scholar · View at Scopus
  207. F. M. Santiago, P. Bueno, C. Olmedo et al., “Effect of N-acetylcysteine administration on intraoperative plasma levels of interleukin-4 and interleukin-10 in liver transplant recipients,” Transplantation Proceedings, vol. 40, no. 9, pp. 2978–2980, 2008. View at Publisher · View at Google Scholar · View at Scopus
  208. O. Brissaud, F. Villega, J. P. Konsman et al., “Short-term effect of erythropoietin on brain lesions and aquaporin-4 expression in a hypoxic-ischemic neonatal rat model assessed by magnetic resonance diffusion weighted imaging and immunohistochemistry,” Pediatric Research, vol. 68, no. 2, pp. 123–127, 2010. View at Publisher · View at Google Scholar · View at Scopus