Table of Contents
Leukemia Research and Treatment
Volume 2012, Article ID 213653, 8 pages
http://dx.doi.org/10.1155/2012/213653
Review Article

Molecular and Cellular Mechanism of Leukemogenesis of ATL: Emergent Evidence of a Significant Role for HBZ in HTLV-1-Induced Pathogenesis

1Immunology Section, Division of Infectious Diseases, Imperial College, Wright-Fleming Institute, Norfolk Place, London W2 1PG, UK
2Laboratory for Virus control, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan

Received 1 September 2011; Accepted 17 October 2011

Academic Editor: Charles R. M. Bangham

Copyright © 2012 Yorifumi Satou and Masao Matsuoka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. A. Proietti, A. B. F. Carneiro-Proietti, B. C. Catalan-Soares, and E. L. Murphy, “Global epidemiology of HTLV-I infection and associated diseases,” Oncogene, vol. 24, no. 39, pp. 6058–6068, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Uchiyama, J. Yodoi, and K. Sagawa, “Adult T-cell leukemia: clinical and hematologic features of 16 cases,” Blood, vol. 50, no. 3, pp. 481–492, 1977. View at Google Scholar · View at Scopus
  3. B. J. Poiesz, F. W. Ruscetti, and A. F. Gazdar, “Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 12, pp. 7415–7419, 1980. View at Google Scholar · View at Scopus
  4. I. Miyoshi, I. Kubonishi, and S. Yoshimoto, “Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells,” Nature, vol. 294, no. 5843, pp. 770–771, 1981. View at Google Scholar · View at Scopus
  5. M. Osame, K. Usuku, and S. Izumo, “HTLV-I associated myelopathy, a new clinical entity,” Lancet, vol. 1, no. 8488, pp. 1031–1032, 1986. View at Google Scholar · View at Scopus
  6. A. Gessain, F. Barin, and J. C. Vernant, “Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis,” Lancet, vol. 2, no. 8452, pp. 407–410, 1985. View at Google Scholar · View at Scopus
  7. M. Mochizuki, K. Yamaguchi, K. Takatsuki, T. Watanabe, S. Mori, and K. Tajima, “HTLV-I and uveitis,” Lancet, vol. 339, no. 8801, p. 1110, 1992. View at Google Scholar · View at Scopus
  8. M. Sugimoto, H. Nakashima, S. Watanabe et al., “T-lymphocyte alveolitis in HTLV-I-associated myelopathy,” Lancet, vol. 2, no. 8569, p. 1220, 1987. View at Google Scholar · View at Scopus
  9. M. Seiki, S. Hattori, Y. Hirayama, and M. Yoshida, “Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 12, pp. 3618–3622, 1983. View at Google Scholar · View at Scopus
  10. M. Matsuoka and K. T. Jeang, “Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation,” Nature Reviews Cancer, vol. 7, no. 4, pp. 270–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Igakura, J. C. Stinchcombe, P. K. C. Goon et al., “Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton,” Science, vol. 299, no. 5613, pp. 1713–1716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M.-I. Thoulouze and A. Alcover, “Can viruses form biofilms?” Trends in Microbiology, vol. 19, no. 6, pp. 257–262, 2011. View at Publisher · View at Google Scholar
  13. K. I. Etoh, S. Tamiya, K. Yamaguchi et al., “Persistent clonal proliferation of human T-lymphotropic virus type I- infected cells in vivo,” Cancer Research, vol. 57, no. 21, pp. 4862–4867, 1997. View at Google Scholar · View at Scopus
  14. M. Cavrois, I. Leclercq, O. Gout, A. Gessain, S. Wain-Hobson, and E. Wattel, “Persistent oligoclonal expansion of human T-cell leukemia virus type 1-infected circulating cells in patients with Tropical spastic paraparesis/HTLV-1 associated myelopathy,” Oncogene, vol. 17, no. 1, pp. 77–82, 1998. View at Google Scholar · View at Scopus
  15. K. Suemori, H. Fujiwara, T. Ochi et al., “HBZ is an immunogenic protein, but not a target antigen for human T-cell leukemia virus type 1-specific cytotoxic T lymphocytes,” Journal of General Virology, vol. 90, no. 8, pp. 1806–1811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Macnamara, A. Rowan, S. Hilburn et al., “HLA class I binding of HBZ determines outcome in HTLV-1 infection,” PLoS Pathogens, vol. 6, no. 9, Article ID e01117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. R. M. Bangham and M. Osame, “Cellular immune response to HTLV-1,” Oncogene, vol. 24, no. 39, pp. 6035–6046, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Satou, J. I. Yasunaga, M. Yoshida, and M. Matsuoka, “HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 3, pp. 720–725, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. N. A. Gillet, N. Malani, A. Melamed et al., “The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones,” Blood, vol. 117, no. 11, pp. 3113–3122, 2011. View at Publisher · View at Google Scholar
  20. G. Franchini, R. Fukumoto, and J. R. Fullen, “T-cell control by human T-cell leukemia/lymphoma virus type 1,” International Journal of Hematology, vol. 78, no. 4, pp. 280–296, 2003. View at Google Scholar · View at Scopus
  21. N. D. Collins, G. C. Newbound, B. Albrecht, J. L. Beard, L. Ratner, and M. D. Lairmore, “Selective ablation of human T-cell lymphotropic virus type 1 p12(I) reduces viral infectivity in vivo,” Blood, vol. 91, no. 12, pp. 4701–4707, 1998. View at Google Scholar · View at Scopus
  22. J. T. Bartoe, B. Albrecht, N. D. Collins et al., “Functional role of pX open reading frame II of human T-lymphotropic virus type 1 in maintenance of viral loads in vivo,” Journal of Virology, vol. 74, no. 3, pp. 1094–1100, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Hiraragi, S. J. Kim, A. J. Phipps et al., “Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13 II is required for viral infectivity in vivo,” Journal of Virology, vol. 80, no. 7, pp. 3469–3476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. V. W. Valeri, A. Hryniewicz, V. Andresen et al., “Requirement of the human T-cell leukemia virus p12 and p30 products for infectivity of human dendritic cells and macaques but not rabbits,” Blood, vol. 116, no. 19, pp. 3809–3817, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Andresen, C. A. Pise-Masison, U. Sinha-Datta et al., “Suppression of HTLV-1 replication by tax-mediated rerouting of the p13 viral protein to nuclear speckles,” Blood, vol. 118, no. 6, pp. 1549–1559, 2011. View at Publisher · View at Google Scholar
  26. Y. Koyanagi, Y. Itoyama, N. Nakamura et al., “In vivo infection of human T-cell leukemia virus type 1 in non-T cells,” Virology, vol. 196, no. 1, pp. 25–33, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. J. H. Richardson, A. J. Edwards, J. K. Cruickshank, P. Rudge, and A. G. Dalgleish, “In vivo cellular tropism of human T-cell leukemia virus type 1,” Journal of Virology, vol. 64, no. 11, pp. 5682–5687, 1990. View at Google Scholar · View at Scopus
  28. J. I. Yasunaga, T. Sakai, K. Nosaka et al., “Impaired production of naive T lymphocytes in human T-cell leukemia virus type I-infected individuals: its implications in the immunodeficient state,” Blood, vol. 97, no. 10, pp. 3177–3183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Nejmeddine, V. S. Negi, S. Mukherjee et al., “HTLV-1-Tax and ICAM-1 act on T-cell signal pathways to polarize the microtubule-organizing center at the virological synapse,” Blood, vol. 114, no. 5, pp. 1016–1025, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Shimizu, G. A. Van Seventer, K. J. Horgan, and S. Shaw, “Roles of adhesion molecules in T-cell recognition: fundamental similarities between four integrins on resting human T cells (LFA-1, VLA-4, VLA-5, VLA-6) in expression, binding, and costimulation,” Immunological Reviews, no. 114, pp. 109–143, 1990. View at Google Scholar · View at Scopus
  31. D. C. Macallan, D. Wallace, Y. Zhang et al., “Rapid turnover of effector-memory CD4+ T cells in healthy humans,” Journal of Experimental Medicine, vol. 200, no. 2, pp. 255–260, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Asquith, Y. Zhang, A. J. Mosley et al., “In vivo T lymphocyte dynamics in humans and the impact of human T-lymphotropic virus 1 infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 19, pp. 8035–8040, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Satou, J.-I. Yasunaga, T. Zhao et al., “HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo,” PLoS Pathogens, vol. 7, no. 2, Article ID e1001274, 2011. View at Publisher · View at Google Scholar
  34. S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, “Regulatory T cells and immune tolerance,” Cell, vol. 133, no. 5, pp. 775–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Belkaid, “Regulatory T cells and infection: a dangerous necessity,” Nature Reviews Immunology, vol. 7, no. 11, pp. 875–888, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Toulza, A. Heaps, Y. Tanaka, G. P. Taylor, and C. R. M. Bangham, “High frequency of CD4+FoxP3+ cells in HTLV-1 infection: inverse correlation with HTLV-l-specific CTL response,” Blood, vol. 111, no. 10, pp. 5047–5053, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Yamazaki and R. M. Steinman, “Dendritic cells as controllers of antigen-specific Foxp3+ regulatory T cells,” Journal of Dermatological Science, vol. 54, no. 2, pp. 69–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. S. E. Macatonia, J. K. Cruickshank, P. Rudge, and S. C. Knight, “Dendritic cells from patients with tropical spastic paraparesis are infected with HTLV-1 and stimulate autologous lymphocyte proliferation,” AIDS Research and Human Retroviruses, vol. 8, no. 9, pp. 1699–1706, 1992. View at Google Scholar · View at Scopus
  39. M. Makino, S. Shimokubo, S. I. Wakamatsu, S. Izumo, and M. Baba, “The role of human T-lymphotropic virus type 1 (HTLV-1)-infected dendritic cells in the development of htlv-1- associated myelopathy/tropical spastic paraparesis,” Journal of Virology, vol. 73, no. 6, pp. 4575–4581, 1999. View at Google Scholar · View at Scopus
  40. K. S. Jones, C. Petrow-Sadowski, Y. K. Huang, D. C. Bertolette, and F. W. Ruscetti, “Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4+ T cells,” Nature Medicine, vol. 14, no. 4, pp. 429–436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Vukmanovic-Stejic, Y. Zhang, J. E. Cook et al., “Human CD4+CD25hiFoxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo,” Journal of Clinical Investigation, vol. 116, no. 9, pp. 2423–2433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Zhao, Y. Satou, K. Sugata et al., “HTLV-1 bZIP factor enhances TGF-β signaling through p300 coactivator,” Blood, vol. 118, no. 7, pp. 1865–1876, 2011. View at Publisher · View at Google Scholar
  43. H. Yano, T. Ishida, A. Inagaki et al., “Regulatory T-cell function of adult T-cell leukemia/lymphoma cells,” International Journal of Cancer, vol. 120, no. 9, pp. 2052–2057, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Chen, N. Ishii, S. Ine et al., “Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells,” International Immunology, vol. 18, no. 2, pp. 269–277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Shimauchi, K. Kabashima, and Y. Tokura, “Adult T-cell leukemia/lymphoma cells from blood and skin tumors express cytotoxic T lymphocyte-associated antigen-4 and Foxp3 but lack suppressor activity toward autologous CD8+ T cells,” Cancer Science, vol. 99, no. 1, pp. 98–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Toulza, K. Nosaka, M. Takiguchi et al., “FoxP3+ regulatory T cells are distinct from leukemia cells in HTLV-1-associated adult T-cell leukemia,” International Journal of Cancer, vol. 125, no. 10, pp. 2375–2382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Abe, K. Uchihashi, T. Kazuto et al., “Foxp3 expression on normal and leukemic CD4+CD25+ T cells implicated in human T-cell leukemia virus type-1 is inconsistent with Treg cells,” European Journal of Haematology, vol. 81, no. 3, pp. 209–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Karube, K. Ohshima, T. Tsuchiya et al., “Expression of FoxP3, a key molecule in CD4+CD25+ regulatory T cells, in adult T-cell leukaemia/lymphoma cells,” British Journal of Haematology, vol. 126, no. 1, pp. 81–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Hori, “Regulatory T cell plasticity: beyond the controversies,” Trends in Immunology, vol. 32, no. 7, pp. 295–300, 2011. View at Publisher · View at Google Scholar
  50. D. Larocca, L. A. Chao, M. H. Seto, and T. K. Brunck, “Human T-cell leukemia virus minus strand transcription in infected T-cells,” Biochemical and Biophysical Research Communications, vol. 163, no. 2, pp. 1006–1013, 1989. View at Google Scholar · View at Scopus
  51. G. Gaudray, F. Gachon, J. Basbous, M. Biard-Piechaczyk, C. Devaux, and J. M. Mesnard, “The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription,” Journal of Virology, vol. 76, no. 24, pp. 12813–12822, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Usui, K. Yanagihara, K. Tsukasaki et al., “Characteristic expression of HTLV-1 basic zipper factor (HBZ) transcripts in HTLV-1 provirus-positive cells,” Retrovirology, vol. 5, article 34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Saito, T. Matsuzaki, Y. Satou et al., “In vivo expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP),” Retrovirology, vol. 6, article 19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Shimizu-Kohno, Y. Satou, F. Arakawa et al., “Detection of HTLV-1 by means of HBZ gene in situ hybridization in formalin-fixed and paraffin-embedded tissues,” Cancer Science, vol. 102, no. 7, pp. 1432–1436, 2011. View at Publisher · View at Google Scholar
  55. M. H. Cavanagh, S. Landry, B. Audet et al., “HTLV-I antisense transcripts initiating in the 3'LTR are alternatively spliced and polyadenylated,” Retrovirology, vol. 3, article 15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Murata, T. Hayashibara, K. Sugahara et al., “A novel alternative splicing isoform of human T-cell leukemia virus type 1 bZIP factor (HBZ-SI) targets distinct subnuclear localization,” Journal of Virology, vol. 80, no. 5, pp. 2495–2505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. F. Rende, I. Cavallari, A. Corradin et al., “Kinetics and intracellular compartmentalization of HTLV-1 gene expression: nuclear retention of HBZ mRNAs,” Blood, vol. 117, no. 18, pp. 4855–4859, 2011. View at Publisher · View at Google Scholar
  58. M. Yoshida, Y. Satou, J. I. Yasunaga, J. I. Fujisawa, and M. Matsuoka, “Transcriptional control of spliced and unspliced human T-cell leukemia virus type 1 bZIP factor (HBZ) gene,” Journal of Virology, vol. 82, no. 19, pp. 9359–9368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Doi, X. Wu, Y. Taniguchi et al., “Preferential selection of human T-cell leukemia virus type I provirus integration sites in leukemic versus carrier states,” Blood, vol. 106, no. 3, pp. 1048–1053, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Clerc, N. Polakowski, C. Andre-Arpin et al., “An interaction between the human T cell leukemia virus type 1 basic leucine zipper factor (HBZ) and the KIX domain of p300/CBP contributes to the down-regulation of tax-dependent viral transcription by HBZ,” Journal of Biological Chemistry, vol. 283, no. 35, pp. 23903–23913, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Mukai and T. Ohshima, “Dual effects of HTLV-1 bZIP factor in suppression of interferon regulatory factor 1,” Biochemical and Biophysical Research Communications, vol. 409, no. 2, pp. 328–332, 2011. View at Publisher · View at Google Scholar
  62. N. Polakowski, H. Gregory, J. M. Mesnard, and I. Lemasson, “Expression of a protein involved in bone resorption, Dkk1, is activated by HTLV-1 bZIP factor through its activation domain,” Retrovirology, vol. 7, article 61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Basbous, C. Arpin, G. Gaudray, M. Piechaczyk, C. Devaux, and J. M. Mesnard, “The HBZ factor of human T-cell leukemia virus type I dimerizes with transcription factors JunB and c-Jun and modulates their transcriptional activity,” Journal of Biological Chemistry, vol. 278, no. 44, pp. 43620–43627, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Thebault, J. Basbous, P. Hivin, C. Devaux, and J. M. Mesnard, “HBZ interacts with JunD and stimulates its transcriptional activity,” FEBS Letters, vol. 562, no. 1–3, pp. 165–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. I. Lemasson, M. R. Lewis, N. Polakowski et al., “Human T-Cell leukemia virus type 1 (HTLV-1) bZIP protein interacts with the cellular transcription factor CREB to inhibit HTLV-1 transcription,” Journal of Virology, vol. 81, no. 4, pp. 1543–1553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Hagiya, J.-I. Yasunaga, Y. Satou, K. Ohshima, and M. Matsuoka, “ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells,” Retrovirology, vol. 8, article 19, 2011. View at Publisher · View at Google Scholar
  67. T. Ohshima, R. Mukai, N. Nakahara et al., “HTLV-1 basic leucine-zipper factor, HBZ, interacts with MafB and suppresses transcription through a Maf recognition element,” Journal of Cellular Biochemistry, vol. 111, no. 1, pp. 187–194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Zhao, J. I. Yasunaga, Y. Satou et al., “Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-κB,” Blood, vol. 113, no. 12, pp. 2755–2764, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Arnold, B. Yamamoto, M. Li et al., “Enhancement of infectivity and persistence in vivo by HBZ, a natural antisense coded protein of HTLV-1,” Blood, vol. 107, no. 10, pp. 3976–3982, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. W. J. Grossman, J. T. Kimata, F. H. Wong, M. Zutter, T. J. Ley, and L. Ratner, “Development of leukemia in mice transgenic for the tax gene of human T- cell leukemia virus type I,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 4, pp. 1057–1061, 1995. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Yoshida, “Multiple viral strategies of HTLV-1 for dysregulation of cell growth control,” Annual Review of Immunology, vol. 19, pp. 475–496, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Z. Giam and K. T. Jeang, “HTLV-1 tax and adult T-cell leukemia,” Frontiers in Bioscience, vol. 12, no. 4, pp. 1496–1507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. S. J. Marriott and O. J. Semmes, “Impact of HTLV-I Tax on cell cycle progression and the cellular DNA damage repair response,” Oncogene, vol. 24, no. 39, pp. 5986–5995, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. H. Hasegawa, H. Sawa, M. J. Lewis et al., “Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I,” Nature Medicine, vol. 12, no. 4, pp. 466–472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Iwakura, M. Tosu, E. Yoshida et al., “Induction of inflammatory arthropathy resembling rheumatoid arthritis in mice transgenic for HTLV-I,” Science, vol. 253, no. 5023, pp. 1026–1028, 1991. View at Google Scholar · View at Scopus
  76. T. Ohsugi, T. Kumasaka, S. Okada, and T. Urano, “The Tax protein of HTLV-1 promotes oncogenesis in not only immature T cells but also mature T cells,” Nature Medicine, vol. 13, no. 5, pp. 527–528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Zhi, L. Yang, Y.-L. Kuo, Y.-K. Ho, H.-M. Shih, and C.-Z. Giam, “NF-κB hyper-activation by HTLV-1 tax induces cellular senescence, but can be alleviated by the viral anti-sense protein HBZ,” PLoS Pathogens, vol. 7, no. 4, Article ID e1002025, 2011. View at Publisher · View at Google Scholar
  78. S. Hino, S. Katamine, K. Kawase et al., “Intervention of maternal transmission of HTLV-I in Nagasaki, Japan,” Leukemia, vol. 8, no. 1, pp. S68–S70, 1994. View at Google Scholar · View at Scopus
  79. A. Bazarbachi, Y. Plumelle, J. Carlos Ramos et al., “Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes,” Journal of Clinical Oncology, vol. 28, no. 27, pp. 4177–4183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Utsunomiya, Y. Miyazaki, Y. Takatsuka et al., “Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation,” Bone Marrow Transplantation, vol. 27, no. 1, pp. 15–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Okamura, A. Utsunomiya, R. Tanosaki et al., “Allogeneic stem-cell transplantation with reduced conditioning intensity as a novel immunotherapy and antiviral therapy for adult T-cell leukemia/lymphoma,” Blood, vol. 105, no. 10, pp. 4143–4145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Kannagi, T. Ohashi, N. Harashima, S. Hanabuchi, and A. Hasegawa, “Immunological risks of adult T-cell leukemia at primary HTLV-I infection,” Trends in Microbiology, vol. 12, no. 7, pp. 346–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. I. Lemasson, N. J. Polakowski, P. J. Laybourn, and J. K. Nyborg, “Transcription regulatory complexes bind the human T-cell leukemia virus 5′ and 3′ long terminal repeats to control gene expression,” Molecular and Cellular Biology, vol. 24, no. 14, pp. 6117–6126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. J. K. Nyborg, D. Egan, and N. Sharma, “The HTLV-1 Tax protein: revealing mechanisms of transcriptional activation through histone acetylation and nucleosome disassembly,” Biochimica et Biophysica Acta, vol. 1799, no. 3-4, pp. 266–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Taniguchi, K. Nosaka, J. I. Yasunaga et al., “Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms,” Retrovirology, vol. 2, article 64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Zimmerman, A. Sargeant, K. Landes, S. A. Fernandez, C.-S. Chen, and M. D. Lairmore, “Efficacy of novel histone deacetylase inhibitor, AR42, in a mouse model of, human T-lymphotropic virus type 1 adult T cell lymphoma,” Leukemia Research, vol. 35, no. 11, pp. 1491–1497, 2011. View at Publisher · View at Google Scholar
  87. A. Lezin, N. Gillet, S. Olindo et al., “Histone deacetylase-mediated transcriptional activation reduces proviral loads in HTLV-1-associated myelopathy/tropical spastic paraparesis patients,” Blood, vol. 110, no. 10, pp. 3722–3728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. G. Belrose, A. Gross, S. Olindo et al., “Effects of valproate on Tax and HBZ expression in HTLV-1 and HAM/TSPT lymphocytes,” Blood, vol. 118, no. 9, pp. 2483–2491, 2011. View at Publisher · View at Google Scholar
  89. P. V. Afonso, M. Mekaouche, F. Mortreux et al., “Highly active antiretroviral treatment against STLV-1 infection combining reverse transcriptase and HDAC inhibitors,” Blood, vol. 116, no. 19, pp. 3802–3808, 2010. View at Publisher · View at Google Scholar · View at Scopus