Table of Contents
Leukemia Research and Treatment
Volume 2012, Article ID 401784, 12 pages
Research Article

Cell-Type-Specific Effects of Silibinin on Vitamin D-Induced Differentiation of Acute Myeloid Leukemia Cells Are Associated with Differential Modulation of RXRα Levels

Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel

Received 26 February 2012; Accepted 15 March 2012

Academic Editor: George P. Studzinski

Copyright © 2012 Rina Wassermann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Plant polyphenols have been shown to enhance the differentiation of acute myeloid leukemia (AML) cells induced by the hormonal form of vitamin D3 (1α,25-dihydroxyvitamin D3; 1,25D). However, how these agents modulate 1,25D effects in different subtypes of AML cells remains poorly understood. Here, we show that both carnosic acid (CA) and silibinin (SIL) synergistically enhancd 1,25D-induced differentiation of myeloblastic HL60 cells. However, in promonocytic U937 cells, only CA caused potentiation while SIL attenuated 1,25D effect. The enhanced effect of 1,25D+CA was accompanied by increases in both the vitamin D receptor (VDR) and retinoid X receptor alpha (RXRα) protein levels and vitamin D response element (VDRE) transactivation in both cell lines. Similar increases were observed in HL60 cells treated with 1,25D + SIL. In U937 cells, however, SIL inhibited 1,25D-induced VDRE transactivation concomitant with downregulation of RXRα at both transcriptional and posttranscriptional levels. These inhibitory effects correlated with the inability of SIL, with or without 1,25D, to activate the Nrf2/antioxidant response element signaling pathway in U937 cells. These results suggest that opposite effects of SIL on 1,25D-induced differentiation of HL60 and U937 cells may be determined by cell-type-specific signaling and transcriptional responses to this polyphenol resulting in differential modulation of RXRα expression.