Table of Contents
Leukemia Research and Treatment
Volume 2012, Article ID 671702, 19 pages
http://dx.doi.org/10.1155/2012/671702
Review Article

The Interface between BCR-ABL-Dependent and -Independent Resistance Signaling Pathways in Chronic Myeloid Leukemia

Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha 23, 6° andar, Centro, 20230-130 Rio de Janeiro, RJ, Brazil

Received 22 November 2011; Accepted 10 February 2012

Academic Editor: Philip J. Hughes

Copyright © 2012 Gabriela Nestal de Moraes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Goldman and J. V. Melo, “Mechanisms of disease: chronic myeloid leukemia—advances in biology and new approaches to treatment,” New England Journal of Medicine, vol. 349, no. 15, pp. 1451–1464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Perrotti, C. Jamieson, J. Goldman, and T. Skorski, “Chronic myeloid leukemia: mechanisms of blastic transformation,” Journal of Clinical Investigation, vol. 120, no. 7, pp. 2254–2264, 2010. View at Publisher · View at Google Scholar
  3. J. V. Melo and D. J. Barnes, “Chronic myeloid leukaemia as a model of disease evolution in human cancer,” Nature Reviews Cancer, vol. 7, no. 6, pp. 441–453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Hernández-Boluda, B. Bellosillo, M. C. Vela, D. Colomer, A. Alvarez-Larrán, and F. Cervantes, “Survivin expression in the progression of chronic myeloid leukemia: a sequential study in 16 patients,” Leukemia and Lymphoma, vol. 46, no. 5, pp. 717–722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Hehlmann, H. Heimpel, J. Hasford et al., “Randomized comparison of busulfan and hydroxyurea in chronic myelogenous leukemia: prolongation of survival by hydroxyurea,” Blood, vol. 82, no. 2, pp. 398–407, 1993. View at Google Scholar
  6. F. Bonifazi, A. de Vivo, G. Rosti et al., “Chronic myeloid leukemia and interferon-α: a study of complete cytogenetic responders,” Blood, vol. 98, no. 10, pp. 3074–3081, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Gratwohl, R. Brand, J. Apperley et al., “Allogeneic hematopoietic stem cell transplantation for chronic myeloid leukemia in Europe 2006: transplant activity, long-term data and current results. An analysis by the chronic leukemia working party of the European Group for Blood and Marrow Transplantation (EBMT),” Haematologica, vol. 91, no. 4, pp. 513–521, 2006. View at Google Scholar · View at Scopus
  8. T. Schindler, W. Bornmann, P. Pellicena, W. T. Miller, B. Clarkson, and J. Kuriyan, “Structural mechanism for STI-571 inhibition of abelson tyrosine kinase,” Science, vol. 289, no. 5486, pp. 1938–1942, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. H. M. Kantarjian, J. E. Cortes, S. O'Brien et al., “Long-term survival benefit and improved complete cytogenetic and molecular response rates with imatinib mesylate in Philadelphia chromosome-positive chronic-phase chronic myeloid leukemia after failure of interferon-α,” Blood, vol. 104, no. 7, pp. 1979–1988, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Pinilla-Ibarz, J. Cortes, and M. J. Mauro, “Intolerance to tyrosine kinase inhibitors in chronic myeloid leukemia,” Cancer, vol. 117, no. 4, pp. 688–697, 2011. View at Publisher · View at Google Scholar
  11. M. Baccarani, G. Saglio, J. Goldman et al., “Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet,” Blood, vol. 108, no. 6, pp. 1809–1820, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Saglio, H. Kantarjian, T. Holyoake, A. Ranganathan, and J. E. Cortés, “Proceedings of the third global workshop on chronic myeloid leukemia,” Clinical Lymphoma, Myeloma and Leukemia, vol. 10, no. 6, pp. 443–451, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Breccia, F. Efficace, and G. Alimena, “Imatinib treatment in chronic myelogenous leukemia: what have we learned so far?” Cancer Letters, vol. 300, no. 2, pp. 115–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Eiring, J. S. Khorashad, K. Morley, and M. W. Deininger, “Advances in the treatment of chronic myeloid leukemia,” BMC Medicine, vol. 9, article 99, 2011. View at Publisher · View at Google Scholar
  15. J. V. Melo and C. Chuah, “Resistance to imatinib mesylate in chronic myeloid leukaemia,” Cancer Letters, vol. 249, no. 2, pp. 121–132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Bixby and M. Talpaz, “Mechanisms of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia and recent therapeutic strategies to overcome resistance,” Hematology, pp. 461–476, 2009. View at Google Scholar · View at Scopus
  17. A. Quintás-Cardama and J. Cortes, “Molecular biology of BCR-ABL1-positive chronic myeloid leukemia,” Blood, vol. 113, no. 8, pp. 1619–1630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Roychowdhury and M. Talpaz, “Managing resistance in chronic myeloid leukemia,” Blood Reviews, vol. 25, no. 6, pp. 279–290, 2011. View at Publisher · View at Google Scholar
  19. K. Eechoute, A. Sparreboom, H. Burger et al., “Drug transporters and imatinib treatment: Implications for clinical practice,” Clinical Cancer Research, vol. 17, no. 3, pp. 406–415, 2011. View at Publisher · View at Google Scholar
  20. S. V. Ambudkar, S. Dey, C. A. Hrycyna, M. Ramachandra, I. Pastan, and M. M. Gottesman, “Biochemical, cellular, and pharmacological aspects of the multidrug transporter,” Annual Review of Pharmacology and Toxicology, vol. 39, pp. 361–398, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. G. D. Kruh, “Introduction to resistance to anticancer agents,” Oncogene, vol. 22, no. 47, pp. 7262–7264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Kartner, D. Evernden-Porelle, G. Bradley, and V. Ling, “Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies,” Nature, vol. 316, no. 6031, pp. 820–823, 1985. View at Google Scholar · View at Scopus
  23. M. M. Gottesman, T. Fojo, and S. E. Bates, “Multidrug resistance in cancer: role of ATP-dependent transporters,” Nature Reviews Cancer, vol. 2, no. 1, pp. 48–58, 2002. View at Google Scholar · View at Scopus
  24. P. M. Chaudhary and I. B. Roninson, “Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells,” Cell, vol. 66, no. 1, pp. 85–94, 1991. View at Google Scholar · View at Scopus
  25. W. T. Klimecki, B. W. Futscher, T. M. Grogan, and W. S. Dalton, “P-glycoprotein expression and function in circulating blood cells from normal volunteers,” Blood, vol. 83, no. 9, pp. 2451–2458, 1994. View at Google Scholar · View at Scopus
  26. A. H. Schinkel, U. Mayer, E. Wagenaar et al., “Normal viability and altered pharmacokinetics in mice lacking MDR1-type (drug-transporting) P-glycoproteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 4028–4033, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. M. F. Fromm, “Importance of P-glycoprotein at blood-tissue barriers,” Trends in Pharmacological Sciences, vol. 25, no. 8, pp. 423–429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Luurtsema, J. Verbeek, M. Lubberink et al., “Carbon-11 labeled tracers for in vivo imaging of P-glycoprotein function: kinetics, advantages and disadvantages,” Current Topics in Medicinal Chemistry, vol. 10, no. 17, pp. 1820–1833, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. K. S. Lown, R. R. Mayo, A. B. Leichtman et al., “Role of intestinal P-glycoprotein (MDR1) in interpatient variation in the oral bioavailability of cyclosporine,” Clinical Pharmacology and Therapeutics, vol. 62, no. 3, pp. 248–260, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. A. H. Schinkel, “P-glycoprotein, a gatekeeper in the blood-brain barrier,” Advanced Drug Delivery Reviews, vol. 36, no. 2-3, pp. 179–194, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Sarkadi, L. Homolya, G. Szakács, and A. Váradi, “Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system,” Physiological Reviews, vol. 86, no. 4, pp. 1179–1236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Svoboda-Beusan, R. Kusec, K. Bendelja et al., “The relevance of multidrug resistance-associated P-glycoprotein expression in the treatment response of B-cell chronic lymphocytic leukemia,” Haematologica, vol. 85, no. 12, pp. 1261–1267, 2000. View at Google Scholar · View at Scopus
  33. M. Ohsawa, Y. Ikura, H. Fukushima et al., “Immunohistochemical expression of multidrug resistance proteins as a predictor of poor response to chemotherapy and prognosis in patients with nodal diffuse large B-cell lymphoma,” Oncology, vol. 68, no. 4–6, pp. 422–431, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. J. Lourenço, R. C. Maia, M. A. M. Scheiner, F. C. Vasconcelos, and M. A. M. Moreira, “Genomic variation at the MDR1 promoter and P-glycoprotein expression and activity in AML patients,” Leukemia Research, vol. 32, no. 6, pp. 976–979, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. T. M. Grogan, C. M. Spier, S. E. Salmon et al., “P-glycoprotein expression in human plasma cell myeloma: correlation with prior chemotherapy,” Blood, vol. 81, no. 2, pp. 490–495, 1993. View at Google Scholar · View at Scopus
  36. S. V. Ambudkar, Z. E. Sauna, M. M. Gottesman, and G. Szakacs, “A novel way to spread drug resistance in tumor cells: functional intercellular transfer of P-glycoprotein (ABCB1),” Trends in Pharmacological Sciences, vol. 26, no. 8, pp. 385–387, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Levchenko, B. M. Mehta, X. Niu et al., “Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 6, pp. 1933–1938, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Bebawy, V. Combes, E. Lee et al., “Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells,” Leukemia, vol. 23, no. 9, pp. 1643–1649, 2009. View at Google Scholar · View at Scopus
  39. L. J. Robinson, W. K. Roberts, T. T. Ling, D. Lamming, S. S. Sternberg, and P. D. Roepe, “Human MDR 1 Protein overexpression delays the apoptotic cascade in chinese hamster ovary fibroblasts,” Biochemistry, vol. 36, no. 37, pp. 11169–11178, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. M. J. Smyth, E. Krasovskis, V. R. Sutton, and R. W. Johnstone, “The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 12, pp. 7024–7029, 1998. View at Google Scholar · View at Scopus
  41. R. W. Johnstone, E. Cretney, and M. J. Smyth, “P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death,” Blood, vol. 93, no. 3, pp. 1075–1085, 1999. View at Google Scholar · View at Scopus
  42. M. Pallis, J. Turzanski, M. Grundy, C. Seedhouse, and N. Russell, “Resistance to spontaneous apoptosis in acute myeloid leukaemia blasts is associated with P-glycoprotein expression and function, but not with the presence of FLT3 internal tandem duplications,” British Journal of Haematology, vol. 120, no. 6, pp. 1009–1016, 2003. View at Publisher · View at Google Scholar
  43. P. S. Souza, F. C. Vasconcelos, F. R. de Souza Reis, G. N. De Moraes, and R. C. Maia, “P-glycoprotein and survivin simultaneously regulate vincristine-induced apoptosis in chronic myeloid leukemia cells,” International Journal of Oncology, vol. 39, no. 4, pp. 925–933, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Kuwazuru, A. Yoshimura, S. Hanada et al., “Expression of the multidrug transporter, P-glycoprotein, in chronic myelogenous leukaemia cells in blast crisis,” British Journal of Haematology, vol. 74, no. 1, pp. 24–29, 1990. View at Google Scholar
  45. A. Stavrovskaya, A. Turkina, N. Sedyakhina et al., “Prognostic value of P-glycoprotein and leukocyte differentiation antigens in chronic meloid leukemia,” Leukemia and Lymphoma, vol. 28, no. 5-6, pp. 469–482, 1998. View at Google Scholar · View at Scopus
  46. A. F. List, K. J. Kopecky, C. L. Willman et al., “Cyclosporine inhibition of P-glycoprotein in chronic myeloid leukemia blast phase,” Blood, vol. 100, no. 5, pp. 1910–1912, 2002. View at Google Scholar · View at Scopus
  47. E. Weisberg and J. D. Griffin, “Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines,” Blood, vol. 95, no. 11, pp. 3498–3505, 2000. View at Google Scholar · View at Scopus
  48. F. C. Vasconcelos, K. L. Silva, P. S. Souza et al., “Variation of MDR proteins expression and activity levels according to clinical status and evolution of CML patients,” Cytometry, B, vol. 80, no. 3, pp. 158–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. F. X. Mahon, M. W. Deininger, B. Schultheis et al., “Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the signal transduction inhibitor STI571: diverse mechanisms of resistance,” Blood, vol. 96, pp. 1070–1079, 2000. View at Google Scholar
  50. N. Widmer, H. Rumpold, G. Untergasser, A. Fayet, T. Buclin, and L. A. Decosterd, “Resistance reversal by RNAi silencing of MDR1 in CML cells associated with increase in imatinib intracellular levels,” Leukemia, vol. 21, no. 7, pp. 1561–1562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Assef, F. Rubio, G. Coló, S. del Mónaco, M. A. Costas, and B. A. Kotsias, “Imatinib resistance in multidrug-resistant K562 human leukemic cells,” Leukemia Research, vol. 33, no. 5, pp. 710–716, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. F. X. Mahon, F. Belloc, V. Lagarde et al., “MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models,” Blood, vol. 101, no. 6, pp. 2368–2373, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Rumpold, A. M. Wolf, K. Gruenewald, G. Gastl, E. Gunsilius, and D. Wolf, “RNAi-mediated knockdown of P-glycoprotein using a transposon-based vector system durably restores imatinib sensitivity in imatinib-resistant CML cell lines,” Experimental Hematology, vol. 33, no. 7, pp. 767–775, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Illmer, M. Schaich, U. Platzbecker et al., “P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate,” Leukemia, vol. 18, no. 3, pp. 401–408, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Zong, S. Zhou, and B. P. Sorrentino, “Loss of P-glycoprotein expression in hematopoietic stem cells does not improve responses to imatinib in a murine model of chronic myelogenous leukemia,” Leukemia, vol. 19, no. 9, pp. 1590–1596, 2005. View at Publisher · View at Google Scholar
  56. T. P. Stromskaya, E. Y. Rybalkina, S. S. Kruglov et al., “Role of P-glycoprotein in evolution of populations of chronic myeloid leukemia cells treated with imatinib,” Biochemistry, vol. 73, no. 1, pp. 29–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Hatziieremia, N. E. Jordanides, T. L. Holyoake, J. C. Mountford, and H. G. Jørgensen, “Inhibition of MDR1 does not sensitize primitive chronic myeloid leukemia CD34+ cells to imatinib,” Experimental Hematology, vol. 37, no. 6, pp. 692–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Gurney, M. Wong, R. L. Balleine et al., “Imatinib disposition and ABCB1 (MDR1, P-glycoprotein) genotype,” Clinical Pharmacology and Therapeutics, vol. 82, no. 1, pp. 33–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Kimchi-Sarfaty, J. M. Oh, I. W. Kim et al., “A "silent" polymorphism in the MDR1 gene changes substrate specificity,” Science, vol. 315, no. 5811, pp. 525–528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Dulucq, S. Bouchet, B. Turcq et al., “Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia,” Blood, vol. 112, no. 5, pp. 2024–2027, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. L. N. Ni, J. Y. Li, K. R. Miao et al., “Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia,” Medical Oncology, vol. 28, no. 1, pp. 265–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Bhatia, M. Holtz, N. Niu et al., “Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment,” Blood, vol. 101, no. 12, pp. 4701–4707, 2003. View at Google Scholar · View at Scopus
  63. M. Dohse, C. Scharenberg, S. Shukla et al., “Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib,” Drug Metabolism and Disposition, vol. 38, no. 8, pp. 1371–1380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Hegedus, C. Özvegy-Laczka, A. Á. Apáti et al., “Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties,” British Journal of Pharmacology, vol. 158, no. 4, pp. 1153–1164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. F. X. Mahon, S. Hayette, V. Lagarde et al., “Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression,” Cancer Research, vol. 68, no. 23, pp. 9809–9816, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Giannoudis, A. Davies, C. M. Lucas, R. J. Harris, M. Pirmohamed, and R. E. Clark, “Effective dasatinib uptake may occur without human organic cation transporter 1 (hOCT1): implications for the treatment of imatinib-resistant chronic myeloid leukemia,” Blood, vol. 112, no. 8, pp. 3348–3354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. D. K. Hiwase, V. Saunders, D. Hewett et al., “Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications,” Clinical Cancer Research, vol. 14, no. 12, pp. 3881–3888, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. N. L. Bartlett, B. L. Lum, G. A. Fisher et al., “Phase I trial of doxorubicin with cyclosporine as a modulator of multidrug resistance,” Journal of Clinical Oncology, vol. 12, no. 4, pp. 835–842, 1994. View at Google Scholar · View at Scopus
  69. A. Garrigues, J. Nugier, S. Orlowski, and E. Ezan, “A high-throughput screening microplate test for the interaction of drugs with P-glycoprotein,” Analytical Biochemistry, vol. 305, no. 1, pp. 106–114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. I. Frydrych, P. Mlejnek, and P. Dolezel, “Cyclosporin A sensitises Bcr-Abl positive cells to imatinib mesylate independently of P-glycoprotein expression,” Toxicology in Vitro, vol. 23, no. 8, pp. 1482–1490, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. R. C. Maia, M. K. Carriço, C. E.N.P. Klumb et al., “Clinical approach to circumvention of multidrug resistance in refractory leukemic patients: association of cyclosporin A with etoposide,” Journal of Experimental and Clinical Cancer Research, vol. 16, no. 4, pp. 419–424, 1997. View at Google Scholar
  72. R. C. Maia, H. Noronha, F. C. Vasconcelos, and V. M. Rumjanek, “Interaction of cyclosporin A and etoposide. Clinical and in vitro assessment in blast phase of chronic myeloid leukaemia,” Clinical and Laboratory Haematology, vol. 19, no. 3, pp. 215–217, 1997. View at Publisher · View at Google Scholar
  73. Z. Ni, M. E. Mark, X. Cai, and Q. Mao, “Fluorescence resonance energy transfer (FRET) analysis demonstrates dimer/oligomer formation of the human breast cancer resistance protein (BCRP/ABCG2) in intact cells,” International Journal of Biochemistry and Molecular Biology, vol. 1, no. 1, pp. 1–11, 2010. View at Google Scholar · View at Scopus
  74. P. A. Fetsch, A. Abati, T. Litman et al., “Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues,” Cancer Letters, vol. 235, no. 1, pp. 84–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Nakagawa, E. Schneider, K. H. Dixon et al., “Reduced intracellular drug accumulation in the absence of P-glycoprotein (MDR1) overexpression in mitoxantrone-resistant human MCF-7 breast cancer cells,” Cancer Research, vol. 52, no. 22, pp. 6175–6181, 1992. View at Google Scholar · View at Scopus
  76. C. Lemos, G. Jansen, and G. J. Peters, “Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors,” British Journal of Cancer, vol. 98, no. 5, pp. 857–862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. Y. Honjo, C. A. Hrycyna, Q. W. Yan et al., “Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells,” Cancer Research, vol. 61, no. 18, pp. 6635–6639, 2001. View at Google Scholar · View at Scopus
  78. M. Miwa, S. Tsukahara, E. Ishikawa, S. Asada, Y. Imai, and Y. Sugimoto, “Single amino acid substitutions in the transmembrane domains of breast cancer resistance protein (BCRP) alter cross resistance patterns in transfectants,” International Journal of Cancer, vol. 107, no. 5, pp. 757–763, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Özvegy-Laczka, T. Hegedus, G. Várady et al., “High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter,” Molecular Pharmacology, vol. 65, no. 6, pp. 1485–1495, 2004. View at Publisher · View at Google Scholar
  80. S. Shukla, Z. E. Sauna, and S. V. Ambudkar, “Evidence for the interaction of imatinib at the transport-substrate site(s) of the multidrug-resistance-linked ABC drug transporters ABCB1 (P-glycoprotein) and ABCG2,” Leukemia, vol. 22, no. 2, pp. 445–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. P. J. Houghton, G. S. Germain, F. C. Harwood et al., “Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro,” Cancer Research, vol. 64, no. 7, pp. 2333–2337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Burger, H. van Tol, A. W. M. Boersma et al., “Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump,” Blood, vol. 104, no. 9, pp. 2940–2942, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Brendel, C. Scharenberg, M. Dohse et al., “Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells,” Leukemia, vol. 21, no. 6, pp. 1267–1275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. S. M. Graham, H. G. Jørgensen, E. Allan et al., “Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro,” Blood, vol. 99, no. 1, pp. 319–325, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Nakanishi, K. Shiozawa, B. A. Hassel, and D. D. Ross, “Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression,” Blood, vol. 108, no. 2, pp. 678–684, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. M. A. Goodell, K. Brose, G. Paradis, A. S. Conner, and R. C. Mulligan, “Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo,” Journal of Experimental Medicine, vol. 183, no. 4, pp. 1797–1806, 1996. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Zhou, J. D. Schuetz, K. D. Bunting et al., “The ABC transporter BCRP1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype,” Nature Medicine, vol. 7, no. 9, pp. 1028–1034, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. C. W. Scharenberg, M. A. Harkey, and B. Torok-Storb, “The ABCG2 transporter is an efficient hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors,” Blood, vol. 99, no. 2, pp. 507–512, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. J. W. Jonker, M. Buitelaar, E. Wagenaar et al., “The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15649–15654, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Zhou, J. J. Morris, Y. Barnes, L. Lan, J. D. Schuetz, and B. P. Sorrentino, “Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 19, pp. 12339–12344, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. P. Breedveld, D. Pluim, G. Cipriani et al., “The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients,” Cancer Research, vol. 65, no. 7, pp. 2577–2582, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. Imai, M. Nakane, K. Kage et al., “C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance,” Molecular Cancer Therapeutics, vol. 1, no. 8, pp. 611–616, 2002. View at Google Scholar · View at Scopus
  93. A. Tamura, M. Watanabe, H. Saito et al., “Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport,” Molecular Pharmacology, vol. 70, no. 1, pp. 287–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Mizuarai, N. Aozasa, and H. Kotani, “Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2,” International Journal of Cancer, vol. 109, no. 2, pp. 238–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. N. Takahashi and M. Miura, “Therapeutic drug monitoring of imatinib for chronic myeloid leukemia patients in the chronic phase,” Pharmacology, vol. 87, no. 5-6, pp. 241–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. H. Koepsell, K. Lips, and C. Volk, “Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications,” Pharmaceutical Research, vol. 24, no. 7, pp. 1227–1251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. M. A. Hediger, M. F. Romero, J. B. Peng, A. Rolfs, H. Takanaga, and E. A. Bruford, “The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins,” Pflugers Archiv European Journal of Physiology, vol. 447, no. 5, pp. 465–468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Wang, A. Giannoudis, S. Lane, P. Williamson, M. Pirmohamed, and R. E. Clark, “Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia,” Clinical Pharmacology and Therapeutics, vol. 83, no. 2, pp. 258–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. J. Thomas, L. Wang, R. E. Clark, and M. Pirmohamed, “Active transport of imatinib into and out of cells: implications for drug resistance,” Blood, vol. 104, no. 12, pp. 3739–3745, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. D. L. White, V. A. Saunders, P. Dang et al., “Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity,” Blood, vol. 110, no. 12, pp. 4064–4072, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. L. C. Crossman, B. J. Druker, M. W. N. Deininger, M. Pirmohamed, L. Wang, and R. E. Clark, “hOCT 1 and resistance to imatinib,” Blood, vol. 106, no. 3, pp. 1133–1134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Hu, R. M. Franke, K. K. Filipski et al., “Interaction of imatinib with human organic ion carriers,” Clinical Cancer Research, vol. 14, no. 10, pp. 3141–3148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. N. E. Crook, R. J. Clem, and L. K. Miller, “An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif,” Journal of Virology, vol. 67, no. 4, pp. 2168–2174, 1993. View at Google Scholar · View at Scopus
  104. Q. L. Deveraux and J. C. Reed, “IAP family proteins—suppressors of apoptosis,” Genes and Development, vol. 13, no. 3, pp. 239–252, 1999. View at Google Scholar · View at Scopus
  105. A. Wrzesień-Kuś, P. Smolewski, A. Sobczak-Pluta, A. Wierzbowska, and T. Robak, “The inhibitor of apoptosis protein family and its antagonists in acute leukemias,” Apoptosis, vol. 9, no. 6, pp. 705–715, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. Q. L. Deveraux, R. Takahashi, G. S. Salvesen, and J. C. Reed, “X-linked IAP is a direct inhibitor of cell-death proteases,” Nature, vol. 388, no. 6639, pp. 300–304, 1997. View at Publisher · View at Google Scholar · View at Scopus
  107. B. P. Eckelman, G. S. Salvesen, and F. L. Scott, “Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family,” EMBO Reports, vol. 7, no. 10, pp. 988–994, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. F. L. Scott, J. B. Denault, S. J. Riedl, H. Shin, M. Renatus, and G. S. Salvesen, “XIAP inhibits caspase-3 and -7 using two binding sites: evolutionary conserved mechanism of IAPs,” EMBO Journal, vol. 24, no. 3, pp. 645–655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. A. M. Verhagen, P. G. Ekert, M. Pakusch et al., “Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins,” Cell, vol. 102, no. 1, pp. 43–53, 2000. View at Google Scholar · View at Scopus
  110. P. Liston, W. G. Fong, N. L. Kelly et al., “Identification of XAF1 as an antagonist of XIAP anti-Caspase activity,” Nature Cell Biology, vol. 3, no. 2, pp. 128–133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Holcik and R. G. Korneluk, “XIAP, the guardian angel,” Nature Reviews Molecular Cell Biology, vol. 2, no. 7, pp. 550–556, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. A. R. Mufti, E. Burstein, and C. S. Duckett, “XIAP: cell death regulation meets copper homeostasis,” Archives of Biochemistry and Biophysics, vol. 463, no. 2, pp. 168–174, 2007. View at Publisher · View at Google Scholar
  113. S. Galbán and C. S. Duckett, “XIAP as a ubiquitin ligase in cellular signaling,” Cell Death and Differentiation, vol. 17, no. 1, pp. 54–60, 2010. View at Google Scholar · View at Scopus
  114. H. Harlin, S. B. Reffey, C. S. Duckett, T. Lindsten, and C. B. Thompson, “Characterization of XIAP-deficient mice,” Molecular and Cellular Biology, vol. 21, no. 10, pp. 3604–3608, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. B. Vischioni, P. van der Valk, S. W. Span, F. A. E. Kruyt, J. A. Rodriguez, and G. Giaccone, “Expression and localization of inhibitor of apoptosis proteins in normal human tissues,” Human Pathology, vol. 37, no. 1, pp. 78–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. S. S. Liu, B. K. Tsang, A. N. Cheung et al., “Anti-apoptotic proteins, apoptotic and proliferative parameters and their prognostic significance in cervical carcinoma,” European Journal of Cancer, vol. 37, no. 9, pp. 1104–1110, 2001. View at Publisher · View at Google Scholar
  117. B. Z. Carter, S. M. Kornblau, T. Tsao et al., “Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or prognosis,” Blood, vol. 102, no. 12, pp. 4179–4186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. I. Tamm, S. Richter, F. Scholz et al., “Xiap expression correlates with monocytic differentiation in adult de novo AML: impact on prognosis,” Hematology Journal, vol. 5, no. 6, pp. 489–495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. I. Tamm, S. Richter, D. Oltersdorf et al., “High expression levels of x-linked inhibitor of apoptosis protein and survivin correlate with poor overall survival in childhood de novo acute myeloid leukemia,” Clinical Cancer Research, vol. 10, no. 11, pp. 3737–3744, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. Y. Zhang, J. Zhu, Y. Tang et al., “X-linked inhibitor of apoptosis positive nuclear labeling: a new independent prognostic biomarker of breast invasive ductal carcinoma,” Diagnostic Pathology, vol. 6, no. 1, article 49, 2011. View at Publisher · View at Google Scholar
  121. G. Fang, C. N. Kim, C. L. Perkins et al., “CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl-positive human leukemia cells to apoptosis due to antileukemic drugs,” Blood, vol. 96, no. 6, pp. 2246–2253, 2000. View at Google Scholar · View at Scopus
  122. J. S. Kim, H. K. Jeung, J. W. Cheong et al., “Apicidin potentiates the imatinib-induced apoptosis of Bcr-Abl-positive human leukaemia cells by enhancing the activation of mitochondria-dependent caspase cascades,” British Journal of Haematology, vol. 124, no. 2, pp. 166–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. K. Airiau, F.-X. Mahon, M. Josselin, M. Jeanneteau, B. Turcq, and F. Belloc, “ABT-737 increases tyrosine kinase inhibitor-induced apoptosis in chronic myeloid leukemia cells through XIAP downregulation and sensitizes CD34+ CD38- population to imatinib,” Experimental Hematology. In press. View at Publisher · View at Google Scholar
  124. X. S. Hao, J. H. Hao, F. T. Liu, A. C. Newland, and L. Jia, “Potential mechanisms of leukemia cell resistance to TRAIL-induced apopotosis,” Apoptosis, vol. 8, no. 6, pp. 601–607, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. D. C. McManus, C. A. Lefebvre, G. Cherton-Horvat et al., “Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics,” Oncogene, vol. 23, no. 49, pp. 8105–8117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. A. D. Schimmer, S. Dalili, R. A. Batey, and S. J. Riedl, “Targeting XIAP for the treatment of malignancy,” Cell Death and Differentiation, vol. 13, no. 2, pp. 179–188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. A. D. Schimmer, E. H. Estey, G. Borthakur et al., “Phase I/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia,” Journal of Clinical Oncology, vol. 27, no. 28, pp. 4741–4746, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. R. T. Lima, L. M. Martins, J. E. Guimarães, C. Sambade, and M. H. Vasconcelos, “Chemosensitization effects of XIAP downregulation in K562 leukemia cells,” Journal of Chemotherapy, vol. 18, no. 1, pp. 98–102, 2006. View at Google Scholar · View at Scopus
  129. H. Seca, R. T. Lima, J. E. Guimarães, and M. H. Vasconcelos, “Simultaneous targeting of P-gp and XIAP with siRNAs increases sensitivity of P-gp overexpressing CML cells to imatinib,” Hematology, vol. 16, no. 2, pp. 100–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. P. S. de Souza, F. da Cunha Vasconcelos, L. F. R. Silva, and R. C. Maia, “Cyclosporine A enables vincristine-induced apoptosis during reversal of multidrug resistance phenotype in chronic myeloid leukemia cells,” Tumor Biology. In press. View at Publisher · View at Google Scholar
  131. G. Ambrosini, C. Adida, and D. C. Altieri, “A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma,” Nature Medicine, vol. 3, no. 8, pp. 917–921, 1997. View at Publisher · View at Google Scholar · View at Scopus
  132. F. Li, G. Ambrosini, E. Y. Chu et al., “Control of apoptosis and mitotic spindle checkpoint by survivin,” Nature, vol. 396, no. 6711, pp. 580–584, 1998. View at Publisher · View at Google Scholar · View at Scopus
  133. F. Li and X. Ling, “Survivin study: an update of “what is the next wave?”,” Journal of Cellular Physiology, vol. 208, no. 3, pp. 476–486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Speletas, N. Argentou, V. Karanikas et al., “Survivin isoform expression patterns in CML patients correlate with resistance to imatinib and progression, but do not trigger cytolytic responses,” Clinical Immunology, vol. 139, no. 2, pp. 155–163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. D. C. Altieri, “Validating survivin as a cancer therapeutic target,” Nature Reviews Cancer, vol. 3, no. 1, pp. 46–54, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. S. Fukuda and L. M. Pelus, “Survivin, a cancer target with an emerging role in normal adult tissues,” Molecular Cancer Therapeutics, vol. 5, no. 5, pp. 1087–1098, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. S. Fukuda and L. M. Pelus, “Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34+ cells by hematopoietic growth factors: Implication of survivin expression in normal hematopoiesis,” Blood, vol. 98, no. 7, pp. 2091–2100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  138. J. M. Gerber, L. Qin, J. Kowalski et al., “Characterization of chronic myeloid leukemia stem cells,” American Journal of Hematology, vol. 86, no. 1, pp. 31–37, 2011. View at Google Scholar
  139. G. V. Helgason, G. A. R. Young, and T. L. Holyoake, “Targeting chronic myeloid leukemia stem cells,” Current Hematologic Malignancy Reports, vol. 5, no. 2, pp. 81–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Mori, H. Wada, Y. Nishimura, T. Okamoto, Y. Takemoto, and E. Kakishita, “Expression of the antiapoptosis gene survivin in human leukemia,” International Journal of Hematology, vol. 75, no. 2, pp. 161–165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. A. Badran, A. Yoshida, Yujiwano et al., “Expression of the antiapoptotic gene survivin in chronic myeloid leukemia,” Anticancer Research, vol. 23, no. 1, pp. 589–592, 2003. View at Google Scholar · View at Scopus
  142. E. Conte, F. Stagno, P. Guglielmo, A. Scuto, C. Consoli, and A. Messina, “Survivin expression in chronic myeloid leukemia,” Cancer Letters, vol. 225, no. 1, pp. 105–110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Zhara, H. Mourad, G. Farouk, M. Elbatch, S. Ezzat, and W. Sami, “Molecular detection of survivin expression, antiapoptotic gene, and other prognostic markers, how they are correlated and how it could be of prognostic value in chronic myeloid leukemia patient,” The Egyptian Journal of Immunology, vol. 14, no. 2, pp. 51–62, 2007. View at Google Scholar
  144. B. Z. Carter, D. H. Mak, W. D. Schober et al., “Regulation of survivin expression through BCR-Abl/MAPK cascade: targeting survivin overcomes imatinib resistance and increases imatinib sensitivity in imatinib-responsive CML cells,” Blood, vol. 107, no. 4, pp. 1555–1563, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. F. R. D. S. Reis, F. D. C. Vasconcelos, D. L. Pereira, A. Moellman-Coelho, K. L. Silva, and R. C. Maia, “Survivin and P-glycoprotein are associated and highly expressed in late phase chronic myeloid leukemia,” Oncology Reports, vol. 26, no. 2, pp. 471–478, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. H. Yamamoto, C. Y. Ngan, and M. Monden, “Cancer cells survive with survivin,” Cancer Science, vol. 99, no. 9, pp. 1709–1714, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. J. K. Kwee, D. G. Luque, A. C. D. S. Ferreira et al., “Modulation of reactive oxygen species by antioxidants in chronic myeloid leukemia cells enhances imatinib sensitivity through survivin downregulation,” Anti-Cancer Drugs, vol. 19, no. 10, pp. 975–981, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. G. Nestal de Moraes, K. L. Silva, F. D. C. Vasconcelos, and R. C. Maia, “Survivin overexpression correlates with an apoptosis-resistant phenotype in chronic myeloid leukemia cells,” Oncology Reports, vol. 25, no. 6, pp. 1613–1619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. W. Fiskus, Y. Wang, R. Joshi et al., “Cotreatment with vorinostat enhances activity of MK-0457 (VX-680) against acute and chronic myelogenous leukemia cells,” Clinical Cancer Research, vol. 14, no. 19, pp. 6106–6115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. S. A. Bright, G. Campiani, M. W. Deininger, M. Lawler, D. C. Williams, and D. M. Zisterer, “Sequential treatment with flavopiridol synergistically enhances pyrrolo-1,5-benzoxazepine-induced apoptosis in human chronic myeloid leukaemia cells including those resistant to imatinib treatment,” Biochemical Pharmacology, vol. 80, no. 1, pp. 31–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. T. Nakahara, A. Kita, K. Yamanaka et al., “Broad spectrum and potent antitumor activities of YM155, a novel small-molecule survivin suppressant, in a wide variety of human cancer cell lines and xenograft models,” Cancer Science, vol. 102, no. 3, pp. 614–621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. P. Fortugno, N. R. Wall, A. Giodini et al., “Survivin exists in immunochemically distinct subcellular pools and is involved in spindle microtubule function,” Journal of Cell Science, vol. 115, no. 3, pp. 575–585, 2002. View at Google Scholar · View at Scopus
  153. B. Gyurkocza, J. Plescia, C. M. Raskett et al., “Antileukemic activity of shepherdin and molecular diversity of Hsp90 inhibitors,” Journal of the National Cancer Institute, vol. 98, no. 15, pp. 1068–1077, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. Z. Wang, J. Sampath, S. Fukuda, and L. M. Pelus, “Disruption of the inhibitor of apoptosis protein survivin sensitizes BCR-ABL-positive cells to STI571-induced apoptosis,” Cancer Research, vol. 65, no. 18, pp. 8224–8232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  155. S. F. de Mattos, A. Essafi, I. Soeiro et al., “FOXO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism,” Molecular and Cellular Biology, vol. 24, no. 22, pp. 10058–10071, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. A. Essafi, S. Fernández De Mattos, Y. A. M. Hassen et al., “Direct transcriptional regulation of Bim by FOXO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells,” Oncogene, vol. 24, no. 14, pp. 2317–2329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. N. Komatsu, T. Watanabe, M. Uchida et al., “A member of forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR-ABL-expressing cells,” Journal of Biological Chemistry, vol. 278, no. 8, pp. 6411–6419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  158. S. Kikuchi, T. Nagai, M. Kunitama, K. Kirito, K. Ozawa, and N. Komatsu, “Active FKHRL1 overcomes imatinib resistance in chronic myelogenous leukemia-derived cell lines via the production of tumor necrosis factor-related apoptosis-inducing ligand,” Cancer Science, vol. 98, no. 12, pp. 1949–1958, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. K. U. Birkenkamp, A. Essafi, K. E. van der Vos et al., “FOXO3a induces differentiation of Bcr-Abl-transformed cells through transcriptional down-regulation of Id1,” Journal of Biological Chemistry, vol. 282, no. 4, pp. 2211–2220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. Z. Jagani, K. Song, J. L. Kutok et al., “Proteasome inhibition causes regression of leukemia and abrogates BCR-ABL-induced evasion of apoptosis in part through regulation of forkhead tumor suppressors,” Cancer Research, vol. 69, no. 16, pp. 6546–6555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. D. Cilloni, F. Messa, F. Arruga et al., “The NF-κB pathway blockade by the IKK inhibitor PS1145 can overcome Imatinib resistance,” Leukemia, vol. 20, no. 1, pp. 61–67, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. E. A. Duncan, C. A. Goetz, S. J. Stein et al., “IκB kinase β inhibition induces cell death in Imatinib-resistant and T315I Dasatinib-resistant BCR-ABL+ cells,” Molecular Cancer Therapeutics, vol. 7, no. 2, pp. 391–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. N. Lounnas, C. Frelin, N. Gonthier et al., “NF-κB inhibition triggers death of imatinib-sensitive and imatinib-resistant chronic myeloid leukemia cells including T315I Bcr-Abl mutants,” International Journal of Cancer, vol. 125, no. 2, pp. 308–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. M. P. Albero, J. M. Vaquer, E. J. Andreu et al., “Bortezomib decreases Rb phosphorylation and induces caspase-dependent apoptosis in Imatinib-sensitive and-resistant Bcr-Abl1-expressing cells,” Oncogene, vol. 29, no. 22, pp. 3276–3286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. Z. Hu, X. F. Pan, F. Q. Wu et al., “Synergy between proteasome inhibitors and imatinib mesylate in chronic myeloid leukemia,” Plos ONE, vol. 4, no. 7, Article ID e6257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. R. C. Maia, F. C. Vasconcelos, T. de Sá Bacelar et al., “LQB-118, a pterocarpanquinone structurally related to lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone]: a novel class of agent with high apoptotic effect in chronic myeloid leukemia cells,” Investigational New Drugs, vol. 29, no. 6, pp. 1143–1155, 2011. View at Google Scholar
  167. M. Gromicho, J. Dinis, M. Magalhães et al., “Development of imatinib and dasatinib resistance: dynamics of expression of drug transporters ABCB1, ABCC1, ABCG2, MVP, and SLC22A1,” Leukemia and Lymphoma, vol. 52, no. 10, pp. 1980–1990, 2011. View at Publisher · View at Google Scholar
  168. C. Hirayama, H. Watanabe, R. Nakashima et al., “Constitutive overexpression of P-glycoprotein, rather than breast cancer resistance protein or organic cation transporter 1, contributes to acquisition of imatinib-resistance in K562 cells,” Pharmaceutical Research, vol. 25, no. 4, pp. 827–835, 2008. View at Publisher · View at Google Scholar · View at Scopus
  169. O. Fuchs, “Transcription factor NF-κB inhibitors as single therapeutic agents or in combination with classical chemotherapeutic agents for the treatment of hematologic malignancies,” Current Molecular Pharmacology, vol. 3, no. 3, pp. 98–122, 2010. View at Google Scholar · View at Scopus
  170. K. C. Arden, “Multiple roles of FOXO transcription factors in mammalian cells point to multiple roles in cancer,” Experimental Gerontology, vol. 41, no. 8, pp. 709–717, 2006. View at Publisher · View at Google Scholar · View at Scopus
  171. R. Sen and D. Baltimore, “Multiple nuclear factors interact with the immunoglobulin enhancer sequences,” Cell, vol. 46, no. 5, pp. 705–716, 1986. View at Google Scholar · View at Scopus
  172. T. Okamoto, T. Sanda, and K. Asamitsu, “Nk-κb signaling and carcinogenesis,” Current Pharmaceutical Design, vol. 13, no. 5, pp. 447–462, 2007. View at Publisher · View at Google Scholar · View at Scopus
  173. A. K. Mankan, M. W. Lawless, S. G. Gray, D. Kelleher, and R. McManus, “NF-κB regulation: the nuclear response,” Journal of Cellular and Molecular Medicine, vol. 13, no. 4, pp. 631–643, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. T. Braun, G. Carvalho, C. Fabre, J. Grosjean, P. Fenaux, and G. Kroemer, “Targeting NF-κB in hematologic malignancies,” Cell Death and Differentiation, vol. 13, no. 5, pp. 748–758, 2006. View at Publisher · View at Google Scholar · View at Scopus
  175. T. Lu and G. R. Stark, “Cytokine overexpression and constitutive NFκb in cancer,” Cell Cycle, vol. 3, no. 9, pp. 1114–1117, 2004. View at Google Scholar · View at Scopus
  176. M. C. Turco, M. F. Romano, A. Petrella, R. Bisogni, P. Tassone, and S. Venuta, “NF-κB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors,” Leukemia, vol. 18, no. 1, pp. 11–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  177. D. Cilloni, G. Martinelli, F. Messa, M. Baccarani, and G. Saglio, “Nuclear factor κB as a target for new drug development in myeloid malignancies,” Haematologica, vol. 92, no. 9, pp. 1224–1229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  178. Z. Lu, Y. Jin, C. Chen, J. Li, Q. Cao, and J. Pan, “Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-κB signaling and depleting Bcr-Abl,” Molecular Cancer, vol. 9, article 112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  179. S. Luqman and J. M. Pezzuto, “NFκB: a promising target for natural products in cancer chemoprevention,” Phytotherapy Research, vol. 24, no. 7, pp. 949–963, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. L. J. Crawford, P. Windrum, L. Magill et al., “Proteasome proteolytic profile is linked to Bcr-Abl expression,” Experimental Hematology, vol. 37, no. 3, pp. 357–366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  181. K. H. Kaestner, W. Knöchel, and D. E. Martínez, “Unified nomenclature for the winged helix/forkhead transcription factors,” Genes and Development, vol. 14, no. 2, pp. 142–146, 2000. View at Google Scholar · View at Scopus
  182. E. L. Greer and A. Brunet, “FOXO transcription factors at the interface between longevity and tumor suppression,” Oncogene, vol. 24, no. 50, pp. 7410–7425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  183. H. Tran, A. Brunet, E. C. Griffith, and M. E. Greenberg, “The many forks in FOXO's road,” Science's STKE, vol. 2003, no. 172, p. RE5, 2003. View at Google Scholar · View at Scopus
  184. J. Y. Yang and M. C. Hung, “A new fork for clinical application: targeting forkhead transcription factors in cancer,” Clinical Cancer Research, vol. 15, no. 3, pp. 752–757, 2009. View at Publisher · View at Google Scholar · View at Scopus
  185. L. P. van der Heide, F. M. Jacobs, J. P. Burbach, M. F. M. Hoekman, and M. P. Smidt, “FOXO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling,” Biochemical Journal, vol. 391, no. 3, pp. 623–629, 2005. View at Publisher · View at Google Scholar · View at Scopus
  186. L. P. van der Heide, M. F. M. Hoekman, and M. P. Smidt, “The ins and outs of FOXO shuttling: mechanisms of FOXO translocation and transcriptional regulation,” Biochemical Journal, vol. 380, no. 2, pp. 297–309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  187. H. Huang and D. J. Tindall, “Regulation of FOXO protein stability via ubiquitination and proteasome degradation,” Biochimica et Biophysica Acta, vol. 1813, no. 11, pp. 1961–1964, 2011. View at Publisher · View at Google Scholar
  188. Y. Zhao, Y. Wang, and W.-G. Zhu, “Applications of post-translational modifications of FOXO family proteins in biological functions,” Journal of Molecular Cell Biology, vol. 3, no. 5, pp. 276–282, 2011. View at Publisher · View at Google Scholar
  189. T. Skorski, A. Bellacosa, M. Nieborowska-Skorska et al., “Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway,” EMBO Journal, vol. 16, no. 20, pp. 6151–6161, 1997. View at Publisher · View at Google Scholar · View at Scopus
  190. J. Y. Yang and M. C. Hung, “Deciphering the role of forkhead transcription factors in cancer therapy,” Current Drug Targets, vol. 12, no. 9, pp. 1284–1290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  191. Z. Jagani, A. Singh, and R. Khosravi-Far, “FOXO tumor suppressors and BCR-ABL-induced leukemia: a matter of evasion of apoptosis,” Biochimica et Biophysica Acta, vol. 1785, no. 1, pp. 63–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  192. K. Naka, T. Hoshii, T. Muraguchi et al., “TGF-β-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia,” Nature, vol. 463, no. 7281, pp. 676–680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  193. C. Hurtz, K. Hatzi, L. Cerchietti et al., “BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia,” Journal of Experimental Medicine, vol. 208, no. 11, pp. 2163–2174, 2011. View at Publisher · View at Google Scholar
  194. K. Naka, T. Hoshii, and A. Hirao, “Novel therapeutic approach to eradicate tyrosine kinase inhibitor resistant chronic myeloid leukemia stem cells,” Cancer Science, vol. 101, no. 7, pp. 1577–1581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  195. T. Nambu, A. Hamada, R. Nakashima et al., “Association of SLCO1B3 polymorphism with intracellular accumulation of imatinib in leukocytes in patients with chronic myeloid leukemia,” Biological and Pharmaceutical Bulletin, vol. 34, no. 1, pp. 114–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  196. F. Liu, S. Liu, S. He, Z. Xie, X. Zu, and Y. Jiang, “Survivin transcription is associated with P-glycoprotein/MDR1 overexpression in the multidrug resistance of MCF-7 breast cancer cells,” Oncology Reports, vol. 23, no. 5, pp. 1469–1475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. C. D. Netto, A. J. M. da Silva, E. J. S. Salustiano et al., “New Pterocarpanquinones: synthesis, antineoplasic activity on cultured human malignant cell lines and TNF-α modulation in human PBMC cells,” Bioorganic and Medicinal Chemistry, vol. 18, no. 4, pp. 1610–1616, 2010. View at Publisher · View at Google Scholar · View at Scopus
  198. M. Bentires-Alj, V. Barbu, M. Fillet et al., “NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells,” Oncogene, vol. 22, no. 1, pp. 90–97, 2003. View at Publisher · View at Google Scholar · View at Scopus
  199. H. Shen, W. Xu, Q. Chen, Z. Wu, H. Tang, and F. Wang, “Tetrandrine prevents acquired drug resistance of K562 cells through inhibition of MDR1 gene transcription,” Journal of Cancer Research and Clinical Oncology, vol. 136, no. 5, pp. 659–665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  200. R. C. Y. Hui, A. R. Gomes, D. Constantinidou et al., “The forkhead transcription factor FOXO3a increases phosphoinositide-3 kinase/Akt activity in drug-resistant leukemic cells through induction of PIK3CA expression,” Molecular and Cellular Biology, vol. 28, no. 19, pp. 5886–5898, 2008. View at Publisher · View at Google Scholar · View at Scopus
  201. R. C. Y. Hui, R. E. Francis, S. K. Guest et al., “Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 (MDR1) in K562 leukemic cells,” Molecular Cancer Therapeutics, vol. 7, no. 3, pp. 670–678, 2008. View at Publisher · View at Google Scholar · View at Scopus
  202. C. Hilmi, L. Larribere, M. Deckert et al., “Involvement of FKHRL1 in melanoma cell survival and death,” Pigment Cell and Melanoma Research, vol. 21, no. 2, pp. 139–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  203. P. Obexer, J. Hagenbuchner, T. Unterkircher et al., “Repression of BIRC5/survivin by FOXO3/FKHRL1 sensitizes human neuroblastoma cells to DNA damage-induced apoptosis,” Molecular Biology of the Cell, vol. 20, no. 7, pp. 2041–2048, 2009. View at Publisher · View at Google Scholar · View at Scopus
  204. M. Guha, J. Plescia, I. Leav, J. Li, L. R. Languino, and D. C. Altieri, “Endogenous tumor suppression mediated by PTEN involves survivin gene silencing,” Cancer Research, vol. 69, no. 12, pp. 4954–4958, 2009. View at Publisher · View at Google Scholar · View at Scopus
  205. L. Tracey, A. Pérez-Rosado, M. J. Artiga et al., “Expression of the NF-κB targets BCL2 and BIRC5/Survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively,” Journal of Pathology, vol. 206, no. 2, pp. 123–134, 2005. View at Publisher · View at Google Scholar
  206. X. Shi, Y. Jin, C. Cheng et al., “Triptolide inhibits BCR-ABL transcription and induces apoptosis in STI571-resistant chronic myelogenous leukemia cells harboring T315I mutation,” Clinical Cancer Research, vol. 15, no. 5, pp. 1686–1697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  207. Y. L. Wei, Y. Liang, L. Xu, and X. Y. Zhao, “The antiproliferation effect of berbamine on K562 resistant cells by inhibiting NF-κB pathway,” Anatomical Record, vol. 292, no. 7, pp. 945–950, 2009. View at Publisher · View at Google Scholar · View at Scopus
  208. M. Gyrd-Hansen and P. Meier, “IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer,” Nature Reviews Cancer, vol. 10, no. 8, pp. 561–574, 2010. View at Publisher · View at Google Scholar · View at Scopus