Table of Contents
Leukemia Research and Treatment
Volume 2012, Article ID 984754, 15 pages
http://dx.doi.org/10.1155/2012/984754
Review Article

Cotranscriptional Chromatin Remodeling by Small RNA Species: An HTLV-1 Perspective

Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA

Received 23 August 2011; Revised 28 October 2011; Accepted 3 November 2011

Academic Editor: Mineki Saito

Copyright © 2012 Nishat Aliya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Easley, R. Van Duyne, W. Coley et al., “Chromatin dynamics associated with HIV-1 Tat-activated transcription,” Biochimica et Biophysica Acta, vol. 1799, no. 3-4, pp. 275–285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Geeraert, G. Kraus, and R. J. Pomerantz, “Hide-and-seek: the challenge of viral persistence in HIV-1 infection,” Annual Review of Medicine, vol. 59, pp. 487–501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Easley, L. Carpio, I. Guendel et al., “Human T-lymphotropic virus type 1 transcription and chromatin-remodeling complexes,” Journal of Virology, vol. 84, no. 9, pp. 4755–4768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Koiwa, A. Hamano-Usami, T. Ishida et al., “5-long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type 1 provirus in vitro and in vivo,” Journal of Virology, vol. 76, no. 18, pp. 9389–9397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Manns, M. Hisada, and L. La Grenade, “Human T-lymphotropic virus type I infection,” The Lancet, vol. 353, no. 9168, pp. 1951–1958, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. Richardson, A. J. Edwards, J. K. Cruickshank, P. Rudge, and A. G. Dalgleish, “In vivo cellular tropism of human T-cell leukemia virus type 1,” Journal of Virology, vol. 64, no. 11, pp. 5682–5687, 1990. View at Google Scholar · View at Scopus
  7. M. Nagai, M. B. Brennan, J. A. Sakai, C. A. Mora, and S. Jacobson, “CD8+ T cells are an in vivo reservoir for human T-cell lymphotropic virus type I,” Blood, vol. 98, no. 6, pp. 1858–1861, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Grant, K. Barmak, T. Alefantis, J. Yao, S. Jacobson, and B. Wigdahl, “Human T cell leukemia virus type I and neurologic disease: events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation,” Journal of Cellular Physiology, vol. 190, no. 2, pp. 133–159, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. T. J. Lehky, C. H. Fox, S. Koenig et al., “Detection of human T-lymphotropic virus type I (HTLV-I) tax RNA in the central nervous system of HTLV-I-associated myelopathy/tropical spastic paraparesis patients by in situ hybridization,” Annals of Neurology, vol. 37, no. 2, pp. 167–175, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Doi, X. Wu, Y. Taniguchi et al., “Preferential selection of human T-cell leukemia virus type I provirus integration sites in leukemic versus carrier states,” Blood, vol. 106, no. 3, pp. 1048–1053, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Uchiyama, “Human T cell leukemia virus type I (HTLV-I) and human diseases,” Annual Review of Immunology, vol. 15, pp. 15–37, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Leclercq, F. Mortreux, M. Cavrois et al., “Host sequences flanking the human T-cell leukemia virus type 1 provirus in vivo,” Journal of Virology, vol. 74, no. 5, pp. 2305–2312, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Derse, B. Crise, Y. Li et al., “Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses,” Journal of Virology, vol. 81, no. 12, pp. 6731–6741, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. Marriott and O. J. Semmes, “Impact of HTLV-I Tax on cell cycle progression and the cellular DNA damage repair response,” Oncogene, vol. 24, no. 39, pp. 5986–5995, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. H. Lecellier, P. Dunoyer, K. Arar et al., “A cellular microRNA mediates antiviral defense in human cells,” Science, vol. 308, no. 5721, pp. 557–560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Bennasser, S. Y. Le, M. L. Yeung, and K. T. Jeang, “HIV-1 encoded candidate micro-RNAs and their cellular targets,” Retrovirology, vol. 1, p. 43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Houzet and K. T. Jeang, “MicroRNAs and human retroviruses,” Biochimica et Biophysica Acta, vol. 1809, no. 11-12, pp. 686–693, 2011. View at Google Scholar
  18. M. Bellon, Y. Lepelletier, O. Hermine, and C. Nicot, “Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia,” Blood, vol. 113, no. 20, pp. 4914–4917, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Pichler, G. Schneider, and R. Grassmann, “MicroRNA miR-146a and further oncogenesis-related cellular microRNAs are dysregulated in HTLV-1-transformed T lymphocytes,” Retrovirology, vol. 5, article 100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Y. Man, J. I. Yasunaga, Y. Bennasser et al., “Roles for MicroRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1,” Cancer Research, vol. 68, no. 21, pp. 8976–8985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. K. T. Jeang, “Human T cell leukemia virus type 1 (HTLV-1) and oncogene or oncomiR addiction?” Oncotarget, vol. 1, no. 6, pp. 453–456, 2010. View at Google Scholar
  22. H. Cerutti and J. A. Casas-Mollano, “On the origin and functions of RNA-mediated silencing: from protists to man,” Current Genetics, vol. 50, no. 2, pp. 81–99, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. D. J. Obbard, K. H. J. Gordon, A. H. Buck, and F. M. Jiggins, “The evolution of RNAi as a defence against viruses and transposable elements,” Philosophical Transactions of the Royal Society B, vol. 364, no. 1513, pp. 99–115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. K. V. Morris, “siRNA-mediated transcriptional gene silencing: the potential mechanism and a possible role in the histone code,” Cellular and Molecular Life Sciences, vol. 62, no. 24, pp. 3057–3066, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Verdel, S. Jia, S. Gerber et al., “RNAi-mediated targeting of heterochromatin by the RITS complex,” Science, vol. 303, no. 5658, pp. 672–676, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Pichler, J. Heinzinger, P. Klaritsch, H. Zotter, W. Müller, and B. Urlesberger, “Impact of smoking during pregnancy on peripheral tissue oxygenation in term neonates,” Neonatology, vol. 93, no. 2, pp. 132–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. D. H. Kim, L. M. Villeneuve, K. V. Morris, and J. J. Rossi, “Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells,” Nature Structural and Molecular Biology, vol. 13, no. 9, pp. 793–797, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. D. H. Kim, P. Sætrom, J. O. Snove Jr., and J. J. Rossi, “MicroRNA-directed transcriptional gene silencing in mammalian cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 42, pp. 16230–16235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Han, Y. Lee, K. H. Yeom et al., “Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex,” Cell, vol. 125, no. 5, pp. 887–901, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Klase, P. Kale, R. Winograd et al., “HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR,” BMC Molecular Biology, vol. 8, article 63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Klase, R. Winograd, J. Davis et al., “HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression,” Retrovirology, vol. 6, article 18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. L. Yeung, Y. Bennasser, K. Watashi, S. Y. Le, L. Houzet, and K. T. Jeang, “Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid,” Nucleic Acids Research, vol. 37, no. 19, pp. 6575–6586, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. D. L. Ouellet, I. Plante, P. Landry et al., “Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element,” Nucleic Acids Research, vol. 36, no. 7, pp. 2353–2365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Liu, B. Xiao, B. Tang et al., “Up-regulated microRNA-146a negatively modulate Helicobacter pylori-induced inflammatory response in human gastric epithelial cells,” Microbes and Infection, vol. 12, no. 11, pp. 854–863, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Burton, C. D. Upadhyaya, B. Maier, T. J. Hope, and O. J. Semmes, “Human T-cell leukemia virus type 1 tax shuttles between functionally discrete subcellular targets,” Journal of Virology, vol. 74, no. 5, pp. 2351–2364, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Azran, K. T. Jeang, and M. Aboud, “High levels of cytoplasmic HTLV-1 Tax mutant proteins retain a Tax-NF-κB-CBP ternary complex in the cytoplasm,” Oncogene, vol. 24, no. 28, pp. 4521–4530, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Abe, H. Suzuki, H. Nishitsuji, H. Shida, and H. Takaku, “Interaction of human T-cell lymphotropic virus type I Rex protein with Dicer suppresses RNAi silencing,” FEBS Letters, vol. 584, no. 20, pp. 4313–4318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Igakura, J. C. Stinchcombe, P. K. C. Goon et al., “Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton,” Science, vol. 299, no. 5613, pp. 1713–1716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Matsuoka and K. T. Jeang, “Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation,” Nature Reviews Cancer, vol. 7, no. 4, pp. 270–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Nejmeddine, A. L. Barnard, Y. Tanaka, G. P. Taylor, and C. R. M. Bangham, “Human T-lymphotropic virus, type 1, tax protein triggers microtubule reorientation in the virological synapse,” Journal of Biological Chemistry, vol. 280, no. 33, pp. 29653–29660, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Manel, F. J. Kim, S. Kinet, N. Taylor, M. Sitbon, and J. L. Battini, “The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV,” Cell, vol. 115, no. 4, pp. 449–459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Ghez, Y. Lepelletier, K. S. Jones, C. Pique, and O. Hermine, “Current concepts regarding the HTLV-1 receptor complex,” Retrovirology, vol. 7, article 99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. K. T. Jeang, C. Z. Giam, F. Majone, and M. Aboud, “Life, death, and tax: role of HTLV-I oncoprotein in genetic instability and cellular transformation,” Journal of Biological Chemistry, vol. 279, no. 31, pp. 31991–31994, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. P. W. P. Ng, H. Iha, Y. Iwanaga et al., “Genome-wide expression changes induced by HTLV-1 Tax: evidence for MLK-3 mixed lineage kinase involvement in Tax-mediated NF-κB activation,” Oncogene, vol. 20, no. 33, pp. 4484–4496, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Neuveut and K. T. Jeang, “HTLV-I Tax and cell cycle progression,” Progress in Cell Cycle Research, vol. 4, pp. 157–162, 2000. View at Google Scholar · View at Scopus
  46. M. L. Gatza, J. C. Watt, and S. J. Marriott, “Cellular transformation by the HTLV-I Tax protein, a jack-of-all-trades,” Oncogene, vol. 22, no. 33, pp. 5141–5149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Beimling and K. Moelling, “Direct interaction of CREB protein with 21 bp Tax-response elements of HTLV-I LTR,” Oncogene, vol. 7, no. 2, pp. 257–262, 1992. View at Google Scholar · View at Scopus
  48. S. Paca-Uccaralertkun, L. J. Zhao, N. Adya et al., “In vitro selection of DNA elements highly responsive to the human T-cell lymphotropic virus type I transcriptional activator, Tax,” Molecular and Cellular Biology, vol. 14, no. 1, pp. 456–462, 1994. View at Google Scholar · View at Scopus
  49. B. A. Lenzmeier, H. A. Giebler, and J. K. Nyborg, “Human T-cell leukemia virus type 1 tax requires direct access to DNA for recruitment of CREB binding protein to the vital promoter,” Molecular and Cellular Biology, vol. 18, no. 2, pp. 721–731, 1998. View at Google Scholar · View at Scopus
  50. N. Adya and C. Z. Giam, “Distinct regions in human T-cell lymphotropic virus type I tax mediate interactions with activator protein CREB and basal transcription factors,” Journal of Virology, vol. 69, no. 3, pp. 1834–1841, 1995. View at Google Scholar · View at Scopus
  51. T. Suzuki, H. Hirai, J. Fujisawa, T. Fujita, and M. Yoshida, “A trans-activator tax of human T-cell leukemia virus type 1 binds to NF-κB p50 and serum response factor (SRF) and associates with enhancer DNAs of the NF-κB site and CArG box,” Oncogene, vol. 8, no. 9, pp. 2391–2397, 1993. View at Google Scholar · View at Scopus
  52. D. Y. Jin and K. T. Jeang, “HTLV-I Tax self-association in optimal trans-activation function,” Nucleic Acids Research, vol. 25, no. 2, pp. 379–387, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. K. T. Jeang, I. Boros, J. Brady, M. Radonovich, and G. Khoury, “Characterization of cellular factors that interact with the human T-cell leukemia virus type I p40x-responsive 21-base-pair sequence,” Journal of Virology, vol. 62, no. 12, pp. 4499–4509, 1988. View at Google Scholar · View at Scopus
  54. R. Harrod, Y. L. Kuo, Y. Tang et al., “p300 and p300/cAMP-responsive element-binding protein associated factor interact with human T-cell lymphotropic virus type-1 Tax in a multi-histone acetyltransferase/activator-enhancer complex,” Journal of Biological Chemistry, vol. 275, no. 16, pp. 11852–11857, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Harrod, Y. Tang, C. Nicot et al., “An exposed KID-like domain in human T-cell lymphotropic virus type 1 tax is responsible for the recruitment of coactivators CBP/p300,” Molecular and Cellular Biology, vol. 18, no. 9, pp. 5052–5061, 1998. View at Google Scholar · View at Scopus
  56. F. Tie, N. Adya, W. C. Greene, and C. Z. Giam, “Interaction of the human T-lymphotropic virus type 1 Tax dimer with CREB and the viral 21-base-pair repeat,” Journal of Virology, vol. 70, no. 12, pp. 8368–8374, 1996. View at Google Scholar · View at Scopus
  57. J. M. Bogenberger and P. J. Laybourn, “Human T lymphotropic virus type I protein tax reduces histone levels,” Retrovirology, vol. 5, article 9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Inoue, M. Seiki, T. Taniguchi, S. Tsuru, and M. Yoshida, “Induction of interleukin 2 receptor gene expression by p40x encoded by human T-cell leukemia virus type 1,” EMBO Journal, vol. 5, no. 11, pp. 2883–2888, 1986. View at Google Scholar · View at Scopus
  59. S. L. Cross, M. B. Feinberg, J. B. Wolf, N. J. Holbrook, F. Wong-Staal, and W. J. Leonard, “Regulation of the human interleukin-2 receptor α chain promoter: activation of a nonfunctional promoter by the transactivator gene of HTLV-I,” Cell, vol. 49, no. 1, pp. 47–56, 1987. View at Google Scholar · View at Scopus
  60. M. Siekevitz, M. B. Feinberg, and N. Holbrook, “Activation of interleukin 2 and interleukin 2 receptor (Tac) promoter expression by the trans-activator (tat) gene product of human T-cell leukemia virus, type I,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 15, pp. 5389–5393, 1987. View at Google Scholar · View at Scopus
  61. K. Nagata, K. Ohtani, M. Nakamura, and K. Sugamura, “Activation of endogenous c-fos proto-oncogene expression by human T-cell leukemia virus type I-encoded p40(tax) protein in the human T-cell line, Jurkat,” Journal of Virology, vol. 63, no. 8, pp. 3220–3226, 1989. View at Google Scholar · View at Scopus
  62. S. Miyatake, M. Seiki, M. Yoshida, and K. I. Arai, “T-cell activation signals and human T-cell leukemia virus type I-encoded p40x protein activate the mouse granulocyte-macrophage colony-stimulating factor gene through a common DNA element,” Molecular and Cellular Biology, vol. 8, no. 12, pp. 5581–5587, 1988. View at Google Scholar · View at Scopus
  63. N. Azimi, K. Brown, R. N. Bamford, Y. Tagaya, U. Siebenlist, and T. A. Waldmann, “Human T cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-κB site,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 5, pp. 2452–2457, 1998. View at Publisher · View at Google Scholar · View at Scopus
  64. J. M. Mesnard and C. Devaux, “Multiple control levels of cell proliferation by human T-cell leukemia virus type 1 Tax protein,” Virology, vol. 257, no. 2, pp. 277–284, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. S. C. Sun and D. W. Ballard, “Persistent activation of NF-κB by the Tax transforming protein of HTLV-1: hijacking cellular IκB kinases,” Oncogene, vol. 18, no. 49, pp. 6948–6958, 1999. View at Google Scholar · View at Scopus
  66. K. T. Jeang, R. Chiu, E. Santos, and S. J. Kim, “Induction of the HTLV-I LTR by Jun occurs through the Tax-responsive 21-bp elements,” Virology, vol. 181, no. 1, pp. 218–227, 1991. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Fujii, H. Tsuchiya, T. Chuhjo, T. Akizawa, and M. Seiki, “Interaction of HTLV-1 Tax1 with p67(SRF) causes the aberrant induction of cellular immediate early genes through CArG boxes,” Genes and Development, vol. 6, no. 11, pp. 2066–2076, 1992. View at Google Scholar · View at Scopus
  68. K. T. Jeang, “Functional activities of the human T-cell leukemia virus type I Tax oncoprotein: cellular signaling through NF-κB,” Cytokine and Growth Factor Reviews, vol. 12, no. 2-3, pp. 207–217, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Kamada, T. Iwamasa, M. Miyazato, K. Sunagawa, and N. Kunishima, “Kaposi sarcoma in Okinawa,” Cancer, vol. 70, no. 4, pp. 861–868, 1992. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. L. Kuo and C. Z. Giam, “Activation of the anaphase promoting complex by HTLV-1 tax leads to senescence,” EMBO Journal, vol. 25, no. 8, pp. 1741–1752, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Matsuoka and K. T. Jeang, “Human T-cell leukemia virus type I at age 25: a progress report,” Cancer Research, vol. 65, no. 11, pp. 4467–4470, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Yao, C. Grant, E. Harhaj et al., “Regulation of human T-cell leukemia virus type 1 gene expression by Sp1 and Sp3 interaction with TRE-1 repeat III,” DNA and Cell Biology, vol. 25, no. 5, pp. 262–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. S. E. Adunyah, T. M. Unlap, F. Wagner, and A. S. Kraft, “Regulation of c-jun expression and AP-1 enhancer activity by granulocyte-macrophage colony-stimulating factor,” Journal of Biological Chemistry, vol. 266, no. 9, pp. 5670–5675, 1991. View at Google Scholar · View at Scopus
  74. D. A. Liebermann and B. Hoffman, “Differentiation primary response genes and proto-oncogenes as positive and negative regulators of terminal hematopoietic cell differentiation,” Stem Cells, vol. 12, no. 4, pp. 352–369, 1994. View at Google Scholar · View at Scopus
  75. C. Grant, P. Jain, M. Nonnemacher et al., “AP-1-directed human T cell leukemia virus type 1 viral gene expression during monocytic differentiation,” Journal of Leukocyte Biology, vol. 80, no. 3, pp. 640–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Grant, M. Nonnemacher, P. Jain et al., “CCAAT/enhancer-binding proteins modulate human T cell leukemia virus type 1 long terminal repeat activation,” Virology, vol. 348, no. 2, pp. 354–369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Ego, Y. Ariumi, and K. Shimotohno, “The interaction of HTLV-1 tax with HDAC1 negatively regulates the viral gene expression,” Oncogene, vol. 21, no. 47, pp. 7241–7246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. A. El Kharroubi, G. Piras, R. Zensen, and M. A. Martin, “Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter,” Molecular and Cellular Biology, vol. 18, no. 5, pp. 2535–2544, 1998. View at Google Scholar · View at Scopus
  79. M. Okada and K. T. Jeang, “Differential requirements for activation of integrated and transiently transfected human T-cell leukemia virus type 1 long terminal repeat,” Journal of Virology, vol. 76, no. 24, pp. 12564–12573, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Jiang, T. Inada, M. Tanaka, R. A. Furuta, K. Shingu, and J. I. Fujisawa, “Involvement of TORC2, a CREB co-activator, in the in vivo-specific transcriptional control of HTLV-1,” Retrovirology, vol. 6, article 73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. T. Siu, K. T. Chin, K. L. Siu, E. Y. W. Choy, K. T. Jeang, and D. Y. Jin, “TORC1 and TORC2 coactivators are required for tax activation of the human T-cell leukemia virus type 1 long terminal repeats,” Journal of Virology, vol. 80, no. 14, pp. 7052–7059, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. F. Bantignies, R. Rousset, C. Desbois, and P. Jalinot, “Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: binding of tax to tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors,” Molecular and Cellular Biology, vol. 16, no. 5, pp. 2174–2182, 1996. View at Google Scholar · View at Scopus
  83. J. Bodor, W. Walker, E. Flemington, A. L. Spetz, and J. F. Habener, “Modulation of Tax and PKA-mediated expression of HTLV-1 promoter via cAMP response element binding and modulator proteins CREB and CREM,” FEBS Letters, vol. 377, no. 3, pp. 413–418, 1995. View at Publisher · View at Google Scholar · View at Scopus
  84. F. Kashanchi, J. F. Duvall, R. P. S. Kwok, J. R. Lundblad, R. H. Goodman, and J. N. Brady, “The coactivator CBP stimulates human T-cell lymphotrophic virus type I tax transactivation in vitro,” Journal of Biological Chemistry, vol. 273, no. 51, pp. 34646–34652, 1998. View at Publisher · View at Google Scholar · View at Scopus
  85. R. P. S. Kwok, M. E. Laurance, J. R. Lundblad et al., “Control of cAMP-regulated enhancers by the viral transactivator tax through CREB and the co-activator CBP,” Nature, vol. 380, no. 6575, pp. 642–646, 1996. View at Publisher · View at Google Scholar · View at Scopus
  86. H. Jiang, H. Lu, R. L. Schiltz et al., “PCAF interacts with Tax and stimulates Tax transactivation in a histone acetyltransferase-independent manner,” Molecular and Cellular Biology, vol. 19, no. 12, pp. 8136–8145, 1999. View at Google Scholar · View at Scopus
  87. K. E. S. Scoggin, A. Ulloa, and J. K. Nyborg, “The oncoprotein Tax binds the SRC-1-interacting domain of CBP/p300 to mediate transcriptional activation,” Molecular and Cellular Biology, vol. 21, no. 16, pp. 5520–5530, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Benkirane, R. F. Chun, H. Xiao et al., “Activation of integrated provirus requires histone acetyltransferase: p300 and P/CAF are coactivators for HIV-1 Tat,” Journal of Biological Chemistry, vol. 273, no. 38, pp. 24898–24905, 1998. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Hollsberg and D. A. Hafler, “Seminars in medicine of the beth Israel hospital, Boston: pathogenesis of diseases induced by human lymphotropic virus type I infection,” New England Journal of Medicine, vol. 328, no. 16, pp. 1173–1182, 1993. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Marzio, K. Verhoef, M. Vink, and B. Berkhout, “In vitro evolution of a highly replicating, doxycycline-dependent HIV for applications in vaccine studies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 11, pp. 6342–6347, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Rossi, D. Gibellini, G. Barbanti-Brodano et al., “Transiently transfected and stably integrated HIV-1 LTR responds differentially to the silencing activity of the Kruppel-associated box (KRAB) transcriptional repressor domain,” Journal of Medical Virology, vol. 58, no. 3, pp. 264–272, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. D. Moazed, “Small RNAs in transcriptional gene silencing and genome defence,” Nature, vol. 457, no. 7228, pp. 413–420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. W. Filipowicz, L. Jaskiewicz, F. A. Kolb, and R. S. Pillai, “Post-transcriptional gene silencing by siRNAs and miRNAs,” Current Opinion in Structural Biology, vol. 15, no. 3, pp. 331–341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. J. C. Van Wolfswinkel and R. F. Ketting, “The role of small non-coding RNAs in genome stability and chromatin organization,” Journal of Cell Science, vol. 123, no. 11, pp. 1825–1839, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. D. C. Baulcombe, “Molecular biology. Amplified silencing,” Science, vol. 315, no. 5809, pp. 199–200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. R. L. Skalsky and B. R. Cullen, “Viruses, microRNAs, and host interactions,” Annual Review of Microbiology, vol. 64, pp. 123–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. T. P. Chendrimada, R. I. Gregory, E. Kumaraswamy et al., “TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing,” Nature, vol. 436, no. 7051, pp. 740–744, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. G. Hutvagner, J. McLachlan, A. E. Pasquinelli, E. Balint, T. Tuschl, and P. D. Zamore, “A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA,” Science, vol. 293, no. 5531, pp. 834–838, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. J. Liu, M. A. Carmell, F. V. Rivas et al., “Argonaute2 is the catalytic engine of mammalian RNAi,” Science, vol. 305, no. 5689, pp. 1437–1441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. Lorch, B. Maier-Davis, and R. D. Kornberg, “Chromatin remodeling by nucleosome disassembly in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3090–3093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Villagra, F. Cruzat, L. Carvallo et al., “Chromatin remodeling and transcriptional activity of the bone-specific osteocalcin gene require CCAAT/enhancer-binding protein β-dependent recruitment of SWI/SNF activity,” Journal of Biological Chemistry, vol. 281, no. 32, pp. 22695–22706, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. J. F. Partridge, K. S. C. Scott, A. J. Bannister, T. Kouzarides, and R. C. Allshire, “cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site,” Current Biology, vol. 12, no. 19, pp. 1652–1660, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Ekwall, “The RITS complex—a direct link between small RNA and heterochromatin,” Molecular Cell, vol. 13, no. 3, pp. 304–305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. V. Schramke and R. Allshire, “Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing,” Science, vol. 301, no. 5636, pp. 1069–1074, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Pfeffer, M. Zavolan, F. A. Grässer et al., “Identification of virus-encoded microRNAs,” Science, vol. 304, no. 5671, pp. 734–736, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Tang, A. S. Bertke, A. Patel, K. Wang, J. I. Cohen, and P. R. Krause, “An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 31, pp. 10931–10936, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. B. R. Cullen, “Viral and cellular messenger RNA targets of viral microRNAs,” Nature, vol. 457, no. 7228, pp. 421–425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Omoto and Y. R. Fujii, “Regulation of human immunodeficiency virus 1 transcription by nef microRNA,” Journal of General Virology, vol. 86, no. 3, pp. 751–755, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. S. C. Li, C. K. Shiau, and W. C. Lin, “Vir-Mir db: prediction of viral microRNA candidate hairpins,” Nucleic Acids Research, vol. 36, supplement 1, pp. D184–D189, 2008. View at Publisher · View at Google Scholar
  110. K. Ruggero, A. Corradin, P. Zanovello et al., “Role of microRNAs in HTLV-1 infection and transformation,” Molecular Aspects of Medicine, vol. 31, no. 5, pp. 367–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. V. Scaria and V. Jadhav, “microRNAs in viral oncogenesis,” Retrovirology, vol. 4, article 82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. W. Tam, “Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA,” Gene, vol. 274, no. 1-2, pp. 157–167, 2001. View at Publisher · View at Google Scholar · View at Scopus
  113. A. M. Lum, B. B. Wang, L. Li, N. Channa, G. Bartha, and M. Wabl, “Retroviral activation of the mir-106a microRNA cistron in T lymphoma,” Retrovirology, vol. 4, article 5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. G. B. Beck-Engeser, A. M. Lum, K. Huppi, N. J. Caplen, B. B. Wang, and M. Wabl, “Pvt1-encoded microRNAs in oncogenesis,” Retrovirology, vol. 5, article 4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. D. M. Davis, T. Igakura, F. E. McCann et al., “The protean immune cell synapse: a supramolecular structure with many functions,” Seminars in Immunology, vol. 15, no. 6, pp. 317–324, 2003. View at Publisher · View at Google Scholar
  116. M. O. Delgadillo, P. Sáenz, B. Salvador, J. A. García, and C. Simón-Mateo, “Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants,” Journal of General Virology, vol. 85, no. 4, pp. 993–999, 2004. View at Publisher · View at Google Scholar
  117. S. Bivalkar-Mehla, J. Vakharia, R. Mehla et al., “Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system,” Virus Research, vol. 155, no. 1, pp. 1–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. G. L. Sen and H. M. Blau, “Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies,” Nature Cell Biology, vol. 7, no. 6, pp. 633–636, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Lu and B. R. Cullen, “Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis,” Journal of Virology, vol. 78, no. 23, pp. 12868–12876, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. N. Mori, T. Matsuda, M. Tadano et al., “Apoptosis induced by the histone deacetylase inhibitor FR901228 in human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells,” Journal of Virology, vol. 78, no. 9, pp. 4582–4590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. V. R. Sanghvi and L. F. Steel, “A re-examination of global suppression of RNA interference by HIV-1,” PLoS One, vol. 6, no. 2, Article ID e17246, 2011. View at Publisher · View at Google Scholar
  122. M. Lerner, J. Lundgren, S. Akhoondi et al., “MiRNA-27a controls FBW7/hCDC4-dependent cyclin E degradation and cell cycle progression,” Cell Cycle, vol. 10, no. 13, pp. 2172–2183, 2011. View at Publisher · View at Google Scholar
  123. G. Song, G. Ouyang, and S. Bao, “The activation of Akt/PKB signaling pathway and cell survival,” Journal of Cellular and Molecular Medicine, vol. 9, no. 1, pp. 59–71, 2005. View at Google Scholar
  124. H. Iha, K. V. Kibler, V. R. K. Yedavalli et al., “Segregation of NF-κB activation through NEMO/IKKγ by Tax and TNFα: implications for stimulus-specific interruption of oncogenic signaling,” Oncogene, vol. 22, no. 55, pp. 8912–8923, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. F. J. Lemoine and S. J. Marriott, “Accelerated G1 phase progression induced by the human T cell leukemia virus type I (HTLV-I) tax oncoprotein,” Journal of Biological Chemistry, vol. 276, no. 34, pp. 31851–31857, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. Y. Huang, K. Ohtani, R. Iwanaga, Y. Matsumura, and M. Nakamura, “Direct trans-activation of the human cyclin D2 gene by the oncogene product Tax of human T-cell leukemia virus type I,” Oncogene, vol. 20, no. 9, pp. 1094–1102, 2001. View at Publisher · View at Google Scholar · View at Scopus
  127. K. Haller, Y. Wu, E. Derow, I. Schmitt, K. T. Jeang, and R. Grassmann, “Physical interaction of human T-cell leukemia virus type 1 Tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein,” Molecular and Cellular Biology, vol. 22, no. 10, pp. 3327–3338, 2002. View at Publisher · View at Google Scholar · View at Scopus
  128. R. Iwanaga, K. Ohtani, T. Hayashi, and M. Nakamura, “Molecular mechanism of cell cycle progression induced by the oncogene product Tax of human T-cell leukemia virus type I,” Oncogene, vol. 20, no. 17, pp. 2055–2067, 2001. View at Publisher · View at Google Scholar · View at Scopus
  129. T. Akagi, H. Ono, and K. Shimotohno, “Expression of cell-cycle regulatory genes in HTLV-I infected T-cell lines: possible involvement of Tax1 in the altered expression of cyclin D2, p18Ink4 and p21Waf1/Cip1/Sdi1,” Oncogene, vol. 12, no. 8, pp. 1645–1652, 1996. View at Google Scholar · View at Scopus
  130. K. V. Kibler and K. T. Jeang, “CREB/ATF-dependent repression of cyclin A by human T-cell leukemia virus type 1 tax protein,” Journal of Virology, vol. 75, no. 5, pp. 2161–2173, 2001. View at Publisher · View at Google Scholar · View at Scopus
  131. D. H. Walker and J. L. Maller, “Role for cyclin A in the dependence of mitosis on completion of DNA replication,” Nature, vol. 354, no. 6351, pp. 314–317, 1991. View at Publisher · View at Google Scholar · View at Scopus
  132. I. Lemasson, S. Thébault, C. Sardet, C. Devaux, and J. M. Mesnard, “Activation of E2F-mediated transcription by human T-cell leukemia virus type I tax protein in a p16(INK4A)-negative T-cell line,” Journal of Biological Chemistry, vol. 273, no. 36, pp. 23598–23604, 1998. View at Publisher · View at Google Scholar · View at Scopus
  133. K. Ohtani, R. Iwanaga, M. Arai, Y. Huang, Y. Matsumura, and M. Nakamura, “Cell type-specific E2F activation and cell cycle progression induced by the oncogene product tax of human T-cell leukemia virus type I,” Journal of Biological Chemistry, vol. 275, no. 15, pp. 11154–11163, 2000. View at Publisher · View at Google Scholar · View at Scopus
  134. K. Kehn, C. De La Fuente, K. Strouss et al., “The HTLV-I Tax oncoprotein targets the retinoblastoma protein for proteasomal degradation,” Oncogene, vol. 24, no. 4, pp. 525–540, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. J. Whang-Peng, P. A. Bunn, and T. Knutsen, “Cytogenetic studies in human T-cell lymphoma virus (HTLV)-positive leukemia-lymphoma in the United States,” Journal of the National Cancer Institute, vol. 74, no. 2, pp. 357–369, 1985. View at Google Scholar · View at Scopus
  136. L. Chieco-Bianchi, D. Saggioro, A. Del Mistro, A. Montaldo, F. Majone, and A. G. Levis, “Chromosome damage induced in cord blood T-lymphocytes infected in vitro by HTLV-I,” Leukemia, vol. 2, supplement 12, pp. 223S–232S, 1988. View at Google Scholar
  137. T. Itoyama, N. Sadamori, S. Tokunaga et al., “Cytogenetic studies of human T-cell leukemia virus type I carriers: a family study,” Cancer Genetics and Cytogenetics, vol. 49, no. 2, pp. 157–163, 1990. View at Publisher · View at Google Scholar · View at Scopus
  138. A. Tanaka, C. Takahashi, S. Yamaoka, T. Nosaka, M. Maki, and M. Hatanaka, “Oncogenic transformation by the tax gene of human T-cell leukemia virus type I in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 3, pp. 1071–1075, 1990. View at Google Scholar · View at Scopus
  139. K. Maruyama, T. Fukushima, K. Kawamura, and S. Mochizuki, “Chromosome and gene rearrangements in immortalized human lymphocytes infected with human T-lymphotropic virus type I,” Cancer Research, vol. 50, supplement 17, pp. 5697S–5702S, 1990. View at Google Scholar
  140. T. Fujimoto, T. Hata, T. Itoyama et al., “High rate of chromosomal abnormalities in HTLV-I-infected T-cell colonies derived from prodromal phase of adult T-cell leukemia: a study of IL-2-stimulated colony formation in methylcellulose,” Cancer Genetics and Cytogenetics, vol. 109, no. 1, pp. 1–13, 1999. View at Publisher · View at Google Scholar · View at Scopus
  141. F. Majone and K. T. Jeang, “Clastogenic effect of the human T-cell leukemia virus type I tax oncoprotein correlates with unstabilized DNA breaks,” Journal of Biological Chemistry, vol. 275, no. 42, pp. 32906–32910, 2000. View at Google Scholar · View at Scopus
  142. H. Miyake, T. Suzuki, H. Hirai, and M. Yoshida, “Trans-activator tax of human T-cell leukemia virus type 1 enhances mutation frequency of the cellular genome,” Virology, vol. 253, no. 2, pp. 155–161, 1999. View at Publisher · View at Google Scholar · View at Scopus
  143. T. Okamoto, Y. Ohno, S. Tsugane et al., “Multi-step carcinogenesis model for adult T-cell leukemia,” Japanese Journal of Cancer Research, vol. 80, no. 3, pp. 191–195, 1989. View at Google Scholar · View at Scopus
  144. A. Sakashita, T. Hattori, C. W. Miller et al., “Mutations of the p53 gene in adult T-cell leukemia,” Blood, vol. 79, no. 2, pp. 477–480, 1992. View at Google Scholar · View at Scopus
  145. K. Yamato, T. Oka, M. Hiroi et al., “Aberrant expression of the p53 tumor suppressor gene in adult T-cell leukemia and HTLV-I-infected cells,” Japanese Journal of Cancer Research, vol. 84, no. 1, pp. 4–8, 1993. View at Google Scholar · View at Scopus
  146. Y. Hatta, K. Spirin, T. Tasaka et al., “Analysis of p18INK4C in adult T-cell leukaemia and non-Hodgkin's lymphoma,” British Journal of Haematology, vol. 99, no. 3, pp. 665–667, 1997. View at Google Scholar · View at Scopus
  147. T. Suzuki, T. Narita, M. Uchida-Toita, and M. Yoshida, “Down-regulation of the INK4 family of cyclin-dependent kinase inhibitors by tax protein of HTLV-1 through two distinct mechanisms,” Virology, vol. 259, no. 2, pp. 384–391, 1999. View at Publisher · View at Google Scholar · View at Scopus
  148. Y. Hatta and H. P. Koeffler, “Role of tumor suppressor genes in the development of adult T cell leukemia/lymphoma (ATLL),” Leukemia, vol. 16, no. 6, pp. 1069–1085, 2002. View at Publisher · View at Google Scholar · View at Scopus
  149. N. Takenouchi, K. S. Jones, I. Lisinski et al., “GLUT1 is not the primary binding receptor but is associated with cell-to-cell transmission of human T-cell leukemia virus type 1,” Journal of Virology, vol. 81, no. 3, pp. 1506–1510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  150. H. Lu, C. A. Pise-Masison, R. Linton et al., “Tax relieves transcriptional repression by promoting histone deacetylase 1 release from the human T-cell leukemia virus type 1 long terminal repeat,” Journal of Virology, vol. 78, no. 13, pp. 6735–6743, 2004. View at Publisher · View at Google Scholar · View at Scopus
  151. K. Wu, M. E. Bottazzi, C. De La Fuente et al., “Protein profile of Tax-associated complexes,” Journal of Biological Chemistry, vol. 279, no. 1, pp. 495–508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  152. N. D. Collins, G. C. Newbound, B. Albrecht, J. L. Beard, L. Ratner, and M. D. Lairmore, “Selective ablation of human T-cell lymphotropic virus type 1 p12I reduces viral infectivity in vivo,” Blood, vol. 91, no. 12, pp. 4701–4707, 1998. View at Google Scholar · View at Scopus
  153. L. R. Silverman, A. J. Phipps, A. Montgomery, L. Ratner, and M. D. Lairmore, “Human T-cell lymphotropic virus type 1 open reading frame II-encoded p30II is required for in vivo replication: evidence of in vivo reversion,” Journal of Virology, vol. 78, no. 8, pp. 3837–3845, 2004. View at Publisher · View at Google Scholar · View at Scopus
  154. I. Younis, B. Yamamoto, A. Phipps, and P. L. Green, “Human T-cell leukemia virus type 1 expressing nonoverlapping Tax and Rex genes replicates and immortalizes primary human T lymphocytes but fails to replicate and persist in vivo,” Journal of Virology, vol. 79, no. 23, pp. 14473–14481, 2005. View at Publisher · View at Google Scholar · View at Scopus
  155. H. Hiraragi, B. Michael, A. Nair, M. Silic-Benussi, V. Ciminale, and M. Lairmore, “Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13 II sensitizes Jurkat T cells to Ras-mediated apoptosis,” Journal of Virology, vol. 79, no. 15, pp. 9449–9457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  156. J. D. Rosenblatt, A. J. Cann, D. J. Slamon et al., “HTLV-II transactivation is regulated by the overlapping tax/rex nonstructural genes,” Science, vol. 240, no. 4854, pp. 916–919, 1988. View at Google Scholar · View at Scopus
  157. J. Ye, L. Xie, and P. L. Green, “Tax and overlapping rex sequences do not confer the distinct transformation tropisms of human T-cell leukemia virus types 1 and 2,” Journal of Virology, vol. 77, no. 14, pp. 7728–7735, 2003. View at Publisher · View at Google Scholar · View at Scopus
  158. C. Nicot, M. Dundr, J. M. Johnson et al., “HTLV-1-encoded p30II is a post-transcriptional negative regulator of viral replication,” Nature Medicine, vol. 10, no. 2, pp. 197–201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  159. W. Zhang, J. W. Nisbet, J. T. Bartoe, W. Ding, and M. D. Lairmore, “Human T-lymphotropic virus type 1 p30II functions as a transcription factor and differentially modulates CREB-responsive promoters,” Journal of Virology, vol. 74, no. 23, pp. 11270–11277, 2000. View at Publisher · View at Google Scholar · View at Scopus