Table of Contents
Molecular Biology International
Volume 2011 (2011), Article ID 123702, 10 pages
http://dx.doi.org/10.4061/2011/123702
Review Article

Glycolysis in the African Trypanosome: Targeting Enzymes and Their Subcellular Compartments for Therapeutic Development

Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA

Received 30 December 2010; Accepted 16 February 2011

Academic Editor: Kwang Poo Chang

Copyright © 2011 April F. Coley et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Steverding, “The history of African trypanosomiasis,” Parasites and Vectors, vol. 1, Article ID 3, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. B. H. Ter Kuile, “Adaptation of metabolic enzyme activities of Trypanosoma brucei promastigotes to growth rate and carbon regimen,” Journal of Bacteriology, vol. 179, no. 15, pp. 4699–4705, 1997. View at Google Scholar · View at Scopus
  3. M. E. Drew, J. C. Morris, Z. Wang et al., “The adenosine analog tubercidin inhibits glycolysis in Trypanosoma brucei as revealed by an RNA interference library,” Journal of Biological Chemistry, vol. 278, no. 47, pp. 46596–46600, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. F. R. Opperdoes and P. Borst, “Localization of non glycolytic enzymes in a microbody like organelle in Trypanosoma brucei: the glycosome,” FEBS Letters, vol. 80, no. 2, pp. 360–364, 1977. View at Publisher · View at Google Scholar · View at Scopus
  5. B. M. Bakker, F. I. C. Mensonides, B. Teusink, P. Van Hoek, P. A. M. Michels, and H. V. Westerhoff, “Compartmentation protects trypanosomes from the dangerous design of glycolysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 5, pp. 2087–2092, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Albert, J. R. Haanstra, V. Hannaert et al., “Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei,” Journal of Biological Chemistry, vol. 280, no. 31, pp. 28306–28315, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. W. Chambers, M. L. Fowler, M. T. Morris, and J. C. Morris, “The anti-trypanosomal agent lonidamine inhibits Trypanosoma brucei hexokinase 1,” Molecular and Biochemical Parasitology, vol. 158, no. 2, pp. 202–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Trinquier, J. Perie, M. Callens, F. Opperdoes, and M. Willson, “Specific inhibitors for the glycolytic enzymes of Trypanosoma brucei,” Bioorganic and Medicinal Chemistry, vol. 3, no. 11, pp. 1423–1427, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Willson, Y. H. Sanejouand, J. Perie, V. Hannaert, and F. Opperdoes, “Sequencing, modeling, and selective inhibition of Trypanosoma brucei hexokinase,” Chemistry and Biology, vol. 9, no. 7, pp. 839–847, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. W. Chambers, M. T. Kearns, M. T. Morris, and J. C. Morris, “Assembly of heterohexameric trypanosome hexokinases reveals that hexokinase 2 is a regulable enzyme,” Journal of Biological Chemistry, vol. 283, no. 22, pp. 14963–14970, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. G. Paggi, M. Fanciulli, N. Perrotti et al., “The role of mitochondrial hexokinase in neoplastic phenotype and its sensitivity to lonidamine,” Annals of the New York Academy of Sciences, vol. 551, pp. 358–360, 1988. View at Google Scholar · View at Scopus
  12. A. Floridi, S. D'Atri, and R. Menichini, “The effect of the association of gossypol and lonidamine on the energy metabolism of Ehrlich ascites tumor cells,” Experimental and Molecular Pathology, vol. 38, no. 3, pp. 322–335, 1983. View at Google Scholar · View at Scopus
  13. D. R. Newell, J. Mansi, J. Hardy et al., “The pharmacokinetics of oral lonidamine in breast and lung cancer patients,” Seminars in Oncology, vol. 18, no. 2, pp. 11–17, 1991. View at Google Scholar · View at Scopus
  14. Y. Graziani, “Bioflavonoid regulation of ATPase and hexokinase activity in Ehrlich ascites cell mitochondria,” Biochimica et Biophysica Acta, vol. 460, no. 2, pp. 364–373, 1977. View at Google Scholar · View at Scopus
  15. M. Mamani-Matsuda, J. Rambert, D. Malvy et al., “Quercetin Induces Apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 3, pp. 924–929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. H. C. Dodson, T. A. Lyda, J. W. Chambers, M. T. Morris, K. A. Christensen, and J. C. Morris, “Quercetin, a fluorescent bioflavanoid, inhibits Trypanosoma brucei hexokinase 1,” Experimental Parasitology, vol. 127, no. 2, pp. 423–428, 2011. View at Publisher · View at Google Scholar
  17. M. P. Hudock, C. E. Sanz-Rodríguez, Y. Song et al., “Inhibition of Trypanosoma cruzi hexokinase by bisphosphonates,” Journal of Medicinal Chemistry, vol. 49, no. 1, pp. 215–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. E. Sanz-Rodríguez, J. L. Concepción, S. Pekerar, E. Oldfield, and J. A. Urbina, “Bisphosphonates as inhibitors of Trypanosoma cruzi hexokinase: kinetic and metabolic studies,” Journal of Biological Chemistry, vol. 282, no. 17, pp. 12377–12387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. E. R. Sharlow, T. A. Lyda, H. C. Dodson et al., “A target-based high throughput screen yields Trypanosoma brucei hexokinase small molecule inhibitors with antiparasitic activity,” PLoS Neglected Tropical Diseases, vol. 4, Article ID e659, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. B. M. Bakker, P. A. M. Michels, F. R. Opperdoes, and H. V. Westerhoff, “Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes,” Journal of Biological Chemistry, vol. 272, no. 6, pp. 3207–3215, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. M. T. Morris, C. DeBruin, Z. Yang, J. W. Chambers, K. S. Smith, and J. C. Morris, “Activity of a second Trypanosoma brucei hexokinase is controlled by an 18-amino-acid C-terminal tail,” Eukaryotic Cell, vol. 5, no. 12, pp. 2014–2023, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. L. M. J. Verlinde, V. Hannaert, C. Blonski et al., “Glycolysis as a target for the design of new anti-trypanosome drugs,” Drug Resistance Updates, vol. 4, no. 1, pp. 50–65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. J. J. Hornberg, F. J. Bruggeman, B. M. Bakker, and H. V. Westerhoff, “Metabolic control analysis to identify optimal drug targets,” Progress in Drug Research, vol. 64, pp. 171–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. C. Morris, Z. Wang, M. E. Drew, and P. T. Englund, “Glycolysis modulates trypanosome glycoprotein expression as revealed by an RNAi library,” EMBO Journal, vol. 21, no. 17, pp. 4429–4438, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Colasante, M. Ellis, T. Ruppert, and F. Voncken, “Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei,” Proteomics, vol. 6, no. 11, pp. 3275–3293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. D. M. Chudzik, P. A. Michels, S. De Walque, and W. G. J. Hol, “Structures of type 2 peroxisomal targeting signals in two trypanosomatid aldolases,” Journal of Molecular Biology, vol. 300, no. 4, pp. 697–707, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Azéma, C. Lherbet, C. Baudoin, and C. Blonski, “Cell permeation of a Trypanosoma brucei aldolase inhibitor: evaluation of different enzyme-labile phosphate protecting groups,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 13, pp. 3440–3443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. J. Cáceres, P. A. M. Michels, and V. Hannaert, “Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei,” Molecular and Biochemical Parasitology, vol. 169, no. 1, pp. 50–54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Galland, S. de Walque, F. G. J. Voncken, C. L. M. J. Verlinde, and P. A. M. Michels, “An internal sequence targets Trypanosoma brucei triosephosphate isomerase to glycosomes,” Molecular and Biochemical Parasitology, vol. 171, no. 1, pp. 45–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Helfert, A. M. Estévez, B. Bakker, P. Michels, and C. Clayton, “Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei,” Biochemical Journal, vol. 357, no. 1, pp. 117–125, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Kohl, T. Drmota, C. D. Do Thi et al., “Cloning and characterization of the NAD-linked glycerol-3-phosphate dehydrogenases of Trypanosoma brucei brucei and Leishmania mexicana mexicana and expression of the trypanosome enzyme in Escherichia coli,” Molecular and Biochemical Parasitology, vol. 76, no. 1-2, pp. 159–173, 1996. View at Google Scholar · View at Scopus
  32. A. M. Aronov, S. Suresh, F. S. Buckner et al., “Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 8, pp. 4273–4278, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. G. C. Peterson, J. M. Sommer, S. Klosterman, C. C. Wang, and M. Parsons, “Trpanosoma brucei: identification of an internal region of phosphoglycerate kinase required for targeting to glycosomal microbodies,” Experimental Parasitology, vol. 85, no. 1, pp. 16–23, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Alexander, A. C. Parail, and M. Parsons, “An allele of Trypanosoma brucei cytoplasmic phosphoglycerate kinase is a mosaic of other alleles and genes,” Molecular and Biochemical Parasitology, vol. 42, no. 2, pp. 293–296, 1990. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Subramaniam, P. Veazey, S. Redmond et al., “Chromosome-wide analysis of gene function by RNA interference in the African trypanosome,” Eukaryotic Cell, vol. 5, no. 9, pp. 1539–1549, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. J. C. Bressi, J. Choe, M. T. Hough et al., “Adenosine analogues as inhibitors of Trypanosoma brucei phosphoglycerate kinase: elucidation of a novel binding mode for a 2-Amino-N(6)-substituted adenosine,” Journal of Medicinal Chemistry, vol. 43, no. 22, pp. 4135–4150, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Furuya, P. Kessler, A. Jardim, A. Schnaufer, C. Crudder, and M. Parsons, “Glucose is toxic to glycosome-deficient trypanosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14177–14182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. P. S. Kessler and M. Parsons, “Probing the role of compartmentation of glycolysis in procyclic form Trypanosoma brucei: RNA interference studies of PEX14, hexokinase, and phosphofructokinase,” Journal of Biological Chemistry, vol. 280, no. 10, pp. 9030–9036, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. R. Haanstra, A. Van Tuijl, P. Kessler et al., “Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 46, pp. 17718–17723, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Kumar, S. Gupta, R. Srivastava, A. A. Sahasrabuddhe, and C. M. Gupta, “Expression of a PTS2-truncated hexokinase produces glucose toxicity in Leishmania donovani,” Molecular and Biochemical Parasitology, vol. 170, no. 1, pp. 41–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. J. Gould, G. A. Keller, N. Hosken, J. Wilkinson, and S. Subramani, “A conserved tripeptide sorts proteins to peroxisomes,” Journal of Cell Biology, vol. 108, no. 5, pp. 1657–1664, 1989. View at Google Scholar · View at Scopus
  42. G. J. Gatto Jr., B. V. Geisbrecht, S. J. Gould, and J. M. Berg, “Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5,” Nature Structural Biology, vol. 7, no. 12, pp. 1091–1095, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Tsukamoto, S. Hata, S. Yokota et al., “Characterization of the signal peptide at the amino terminus of the rat peroxisomal 3-ketoacyl-CoA thiolase precursor,” Journal of Biological Chemistry, vol. 269, no. 8, pp. 6001–6010, 1994. View at Google Scholar · View at Scopus
  44. J. R. Glover, D. W. Andrews, S. Subramani, and R. A. Rachubinski, “Mutagenesis of the amino targeting signal of Saccharomyces cerevisiae 3- ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo,” Journal of Biological Chemistry, vol. 269, no. 10, pp. 7558–7563, 1994. View at Google Scholar · View at Scopus
  45. G. M. Small, L. J. Szabo, and P. B. Lazarow, “Acyl-CoA oxidase contains two targeting sequences each of which can mediate protein import into peroxisomes,” EMBO Journal, vol. 7, no. 4, pp. 1167–1173, 1988. View at Google Scholar · View at Scopus
  46. M. Marzioch, R. Erdmann, M. Veenhuis, and W. H. Kunau, “PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes,” EMBO Journal, vol. 13, no. 20, pp. 4908–4918, 1994. View at Google Scholar · View at Scopus
  47. J. W. Zhang and P. B. Lazarow, “PEB1 (PAS7) in Saccharomyces cerevisiae encodes a hydrophilic, intra- peroxisomal protein that is a member of the WD repeat family and is essential for the import of thiolase into peroxisomes,” Journal of Cell Biology, vol. 129, no. 1, pp. 65–80, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Rehling, M. Marzioch, F. Niesen, E. Wittke, M. Veenhuis, and W. H. Kunau, “The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene,” EMBO Journal, vol. 15, no. 12, pp. 2901–2913, 1996. View at Google Scholar · View at Scopus
  49. N. Braverman, G. Dodt, S. J. Gould, and D. Valle, “An isoform of Pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes,” Human Molecular Genetics, vol. 7, no. 8, pp. 1195–1205, 1998. View at Google Scholar · View at Scopus
  50. H. Otera, K. Okumoto, K. Tateishi et al., “Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants,” Molecular and Cellular Biology, vol. 18, no. 1, pp. 388–399, 1998. View at Google Scholar · View at Scopus
  51. A. V. C. Pilar, K. P. Madrid, and A. Jardim, “Interaction of Leishmania PTS2 receptor peroxin 7 with the glycosomal protein import machinery,” Molecular and Biochemical Parasitology, vol. 158, no. 1, pp. 72–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Galland, F. Demeure, V. Hannaert et al., “Characterization of the role of the receptors PEX5 and PEX7 in the import of proteins into glycosomes of Trypanosoma brucei,” Biochimica et Biophysica Acta, vol. 1773, no. 4, pp. 521–535, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Sampathkumar, C. Roach, P. A. M. Michels, and W. G. J. Hol, “Structural insights into the recognition of peroxisomal targeting signal 1 by Trypanosoma brucei peroxin 5,” Journal of Molecular Biology, vol. 381, no. 4, pp. 867–880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Parsons, T. Furuya, S. Pal, and P. Kessler, “Biogenesis and function of peroxisomes and glycosomes,” Molecular and Biochemical Parasitology, vol. 115, no. 1, pp. 19–28, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. F. R. Opperdoes, “Compartmentation of carbohydrate metabolism in trypanosomes,” Annual Review of Microbiology, vol. 41, pp. 127–151, 1987. View at Google Scholar · View at Scopus
  56. D. Hoepfner, D. Schildknegt, I. Braakman, P. Philippsen, and H. F. Tabak, “Contribution of the endoplasmic reticulum to peroxisome formation,” Cell, vol. 122, no. 1, pp. 85–95, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Van Der Zand, I. Braakman, and H. F. Tabak, “Peroxisomal membrane proteins insert into the endoplasmic reticulum,” Molecular Biology of the Cell, vol. 21, no. 12, pp. 2057–2065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. S. T. South and S. J. Gould, “Peroxisome synthesis in the absence of preexisting peroxisomes,” Journal of Cell Biology, vol. 144, no. 2, pp. 255–266, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. P. K. Kim, R. T. Mullen, U. Schumann, and J. Lippincott-Schwartz, “The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER,” Journal of Cell Biology, vol. 173, no. 4, pp. 521–532, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Herman, S. Gillies, P. A. Michels, and D. J. Rigden, “Autophagy and related processes in trypanosomatids: insights from genomic and bioinformatic analyses,” Autophagy, vol. 2, no. 2, pp. 107–118, 2006. View at Google Scholar · View at Scopus
  61. S. K. Banerjee, P. S. Kessler, T. Saveria, and M. Parsons, “Identification of trypanosomatid PEX19: functional characterization reveals impact on cell growth and glycosome size and number,” Molecular and Biochemical Parasitology, vol. 142, no. 1, pp. 47–55, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Saveria, A. Halbach, R. Erdmann et al., “Conservation of PEX19-binding motifs required for protein targeting to mammalian peroxisomal and trypanosome glycosomal membranes,” Eukaryotic Cell, vol. 6, no. 8, pp. 1439–1449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Erdmann and G. Blobel, “Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p,” Journal of Cell Biology, vol. 128, no. 4, pp. 509–523, 1995. View at Publisher · View at Google Scholar · View at Scopus
  64. P. A. Marshall, Y. I. Krimkevich, R. H. Lark, J. M. Dyer, M. Veenhuis, and J. M. Goodman, “Pmp27 promotes peroxisomal proliferation,” Journal of Cell Biology, vol. 129, no. 2, pp. 345–355, 1995. View at Google Scholar · View at Scopus
  65. H. Rottensteiner, K. Stein, E. Sonnenhol, and R. Erdmann, “Conserved function of Pex11p and the novel Pex25p and Pex27p in peroxisome biogenesis,” Molecular Biology of the Cell, vol. 14, no. 10, pp. 4316–4328, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Orth, S. Reumann, X. Zhang et al., “The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis,” Plant Cell, vol. 19, no. 1, pp. 333–350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. I. Abe and Y. Fujiki, “cDNA cloning and characterization of a constitutively expressed isoform of the human peroxin Pex11p,” Biochemical and Biophysical Research Communications, vol. 252, no. 2, pp. 529–533, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. X. Li and S. J. Gould, “PEX11 promotes peroxisome division independently of peroxisome metabolism,” Journal of Cell Biology, vol. 156, no. 4, pp. 643–651, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Lorenz, A. G. Maier, E. Baumgart, R. Erdmann, and C. Clayton, “Elongation and clustering of glycosomes in Trypanosoma brucei overexpressing the glycosomal Pex11p,” EMBO Journal, vol. 17, no. 13, pp. 3542–3555, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Maier, P. Lorenz, F. Voncken, and C. Clayton, “An essential dimeric membrane protein of trypanosome glycosomes,” Molecular Microbiology, vol. 39, no. 6, pp. 1443–1451, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. P. A. Marshall, J. M. Dyer, M. E. Quick, and J. M. Goodman, “Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division,” Journal of Cell Biology, vol. 135, no. 1, pp. 123–137, 1996. View at Publisher · View at Google Scholar · View at Scopus
  72. B. Knoblach and R. A. Rachubinski, “Phosphorylation-dependent activation of peroxisome proliferator protein PEX11 controls peroxisome abundance,” Journal of Biological Chemistry, vol. 285, no. 9, pp. 6670–6680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Passreiter, M. Anton, D. Lay et al., “Peroxisome biogenesis: involvement of ARF and coatomer,” Journal of Cell Biology, vol. 141, no. 2, pp. 373–383, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. R. A. Saleem, B. Knoblach, F. D. Mast et al., “Genome-wide analysis of signaling networks regulating fatty acid-induced gene expression and organelle biogenesis,” Journal of Cell Biology, vol. 181, no. 2, pp. 281–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Saraya, M. Veenhuis, and I. J. Van Der Klei, “Peroxisomes as dynamic organelles: peroxisome abundance in yeast,” FEBS Journal, vol. 277, no. 16, pp. 3279–3288, 2010. View at Publisher · View at Google Scholar
  76. S. Nagotu, M. Veenhuis, and I. J. Van der Klei, “Divide et impera: the dictum of peroxisomes,” Traffic, vol. 11, no. 2, pp. 175–184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Kuravi, S. Nagotu, A. M. Krikken et al., “Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae,” Journal of Cell Science, vol. 119, no. 19, pp. 3994–4001, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. G. W. Morgan, D. Goulding, and M. C. Field, “The single dynamin-like protein of Trypanosoma brucei regulates mitochondrial division and is not required for endocytosis,” Journal of Biological Chemistry, vol. 279, no. 11, pp. 10692–10701, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. A. L. Chanez, A. B. Hehl, M. Engstler, and A. Schneider, “Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest,” Journal of Cell Science, vol. 119, no. 14, pp. 2968–2974, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Koch, Y. Yoon, N. A. Bonekamp, M. A. McNiven, and M. Schrader, “A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells,” Molecular Biology of the Cell, vol. 16, no. 11, pp. 5077–5086, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. X. Zhang and J. Hu, “Two small protein families, DYNAMIN-RELATED PROTEIN3 and FISSION1, are required for peroxisome fission in Arabidopsis,” Plant Journal, vol. 57, no. 1, pp. 146–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. A. M. Motley, G. P. Ward, and E. H. Hettema, “Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p,” Journal of Cell Science, vol. 121, no. 10, pp. 1633–1640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Kobayashi, A. Tanaka, and Y. Fujiki, “Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis,” Experimental Cell Research, vol. 313, no. 8, pp. 1675–1686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. F. J. Vizeacoumar, W. N. Vreden, M. Fagarasanu, G. A. Eitzen, J. D. Aitchison, and R. A. Rachubinski, “The dynamin-like protein Vps1p of the yeast Saccharomyces cerevisiae associates with peroxisomes in a Pex19p-dependent manner,” Journal of Biological Chemistry, vol. 281, no. 18, pp. 12817–12823, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Herman, D. Pérez-Morga, N. Schtickzelle, and P. A. M. Michels, “Turnover of glycosomes during life-cycle differentiation of Trypanosoma brucei,” Autophagy, vol. 4, no. 3, pp. 294–308, 2008. View at Google Scholar · View at Scopus