Table of Contents
Molecular Biology International
Volume 2012, Article ID 536802, 10 pages
http://dx.doi.org/10.1155/2012/536802
Review Article

Modulator of Apoptosis 1: A Highly Regulated RASSF1A-Interacting BH3-Like Protein

1Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 3055 Katz Group Centre for Pharmacy and Health Research, 113 Street 87 Avenue, Edmonton, AB, Canada T6G 2E1
2Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543

Received 3 February 2012; Revised 29 March 2012; Accepted 3 April 2012

Academic Editor: Dae-Sik Lim

Copyright © 2012 Jennifer Law et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. El-Kalla, C. Onyskiw, and S. Baksh, “Functional importance of RASSF1A microtubule localization and polymorphisms,” Oncogene, vol. 29, no. 42, pp. 5729–5740, 2010. View at Google Scholar
  2. World Health Organization, The Global Burden of Disease: 2004 Update, 2008.
  3. B. Vogelstein, The Cancer Genome, American Association for Cancer Research, Washington, DC, USA, 2010.
  4. H. Donninger, M. D. Vos, and G. J. Clark, “The RASSF1A tumor suppressor,” Journal of Cell Science, vol. 120, no. 18, pp. 3163–3172, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Baksh, S. Tommasi, S. Fenton et al., “The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to bax conformational change and cell death,” Molecular Cell, vol. 18, no. 6, pp. 637–650, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. C. J. Foley, H. Freedman, S. L. Choo et al., “Dynamics of RASSF1A/MOAP-1 association with death receptors,” Molecular and Cellular Biology, vol. 28, no. 14, pp. 4520–4535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. O. Tan, K. M. L. Tan, S. L. Chan et al., “MAP-1, a novel proapoptotic protein containing a BH3-like motif that associates with bax through Its Bcl-2 homology domains,” Journal of Biological Chemistry, vol. 276, no. 4, pp. 2802–2807, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. K. O. Tan, N. Y. Fu, S. K. Sukumaran et al., “MAP-1 is a mitochondrial effector of Bax,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14623–14628, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Mondello and A. I. Scovassi, “Apoptosis: a way to maintain healthy individuals,” Sub-cellular biochemistry, vol. 50, pp. 307–323, 2010. View at Google Scholar · View at Scopus
  10. D. A. Carson and J. M. Ribeiro, “Apoptosis and disease,” The Lancet, vol. 341, no. 8855, pp. 1251–1254, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Strasser, A. W. Harris, D. C. S. Huang, P. H. Krammer, and S. Cory, “Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis,” The EMBO Journal, vol. 14, no. 24, pp. 6136–6147, 1995. View at Google Scholar · View at Scopus
  12. S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicologic Pathology, vol. 35, no. 4, pp. 495–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. J. Baker and E. P. Reddy, “Modulation of life and death by the TNF receptor superfamily,” Oncogene, vol. 17, no. 25, pp. 3261–3270, 1998. View at Google Scholar · View at Scopus
  14. A. Thorburn, “Death receptor-induced cell killing,” Cellular Signalling, vol. 16, no. 2, pp. 139–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. S. W. G. Tait and D. R. Green, “Mitochondria and cell death: outer membrane permeabilization and beyond,” Nature Reviews Molecular Cell Biology, vol. 11, no. 9, pp. 621–632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Wang and R. J. Youle, “The role of mitochondria in apoptosis,” Annual Review of Genetics, vol. 43, pp. 95–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. L. Chan and V. C. Yu, “Proteins of the Bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities,” Clinical and Experimental Pharmacology and Physiology, vol. 31, no. 3, pp. 119–128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Cory and J. M. Adams, “The BCL2 family: regulators of the cellular life-or-death switch,” Nature Reviews Cancer, vol. 2, no. 9, pp. 647–656, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. R. J. Youle and A. Strasser, “The BCL-2 protein family: opposing activities that mediate cell death,” Nature Reviews Molecular Cell Biology, vol. 9, no. 1, pp. 47–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Lindsten, A. J. Ross, A. King et al., “The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues,” Molecular Cell, vol. 6, no. 6, pp. 1389–1399, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Giam, D. C. S. Huang, and P. Bouillet, “BH3-only proteins and their roles in programmed cell death,” Oncogene, vol. 27, no. 1, pp. S128–S136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Dammann, C. Li, J. H. Yoon, P. L. Chin, S. Bates, and G. P. Pfeifer, “Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3,” Nature Genetics, vol. 25, no. 3, pp. 315–319, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Richter, G. P. Pfeifer, and R. H. Dammann, “The RASSF proteins in cancer; from epigenetic silencing to functional characterization,” Biochimica et Biophysica Acta, vol. 1796, no. 2, pp. 114–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Sherwood, A. Recino, A. Jeffries, A. Ward, and A. D. Chalmers, “The N-terminal RASSF family: a new group of Ras-association-domain-containing proteins, with emerging links to cancer formation,” Biochemical Journal, vol. 425, no. 2, pp. 303–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Underhill-Day, V. Hill, and F. Latif, “N-terminal RASSF family (RASSF7-RASSF10): a mini review,” Epigenetics, vol. 6, no. 3, pp. 284–292, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. L. van der Weyden and D. J. Adams, “The Ras-association domain family (RASSF) members and their role in human tumourigenesis,” Biochimica et Biophysica Acta, vol. 1776, no. 1, pp. 58–85, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. G. P. Pfeifer, J. H. Yoon, L. Liu, S. Tommasi, S. P. Wilczynski, and R. Dammann, “Methylation of the RASSF1A gene in human cancers,” Biological Chemistry, vol. 383, no. 6, pp. 907–914, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Agathanggelou, W. N. Cooper, and F. Latif, “Role of the Ras-association domain family 1 tumor suppressor gene in human cancers,” Cancer Research, vol. 65, no. 9, pp. 3497–3508, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. L. B. Hesson, W. N. Cooper, and F. Latif, “The role of RASSF1A methylation in cancer,” Disease Markers, vol. 23, no. 1-2, pp. 73–87, 2007. View at Google Scholar · View at Scopus
  30. R. Dammann, U. Schagdarsurengin, C. Seidel et al., “The tumor suppressor RASSF1A in human carcinogenesis: an update,” Histology and Histopathology, vol. 20, no. 2, pp. 645–663, 2005. View at Google Scholar · View at Scopus
  31. A. Dallol, A. Agathanggelou, S. Tommasi, G. P. Pfeifer, E. R. Maher, and F. Latif, “Involvement of the RASSF1A tumor suppressor gene in controlling cell migration,” Cancer Research, vol. 65, no. 17, pp. 7653–7659, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. D. Vos, A. Martinez, C. Elam et al., “A role for the RASSF1A tumor suppressor in the regulation of tubulin polymerization and genomic stability,” Cancer Research, vol. 64, no. 12, pp. 4244–4250, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Liu, A. Vo, and W. L. McKeehan, “Specificity of the methylation-suppressed A isoform of candidate tumor suppressor RASSF1 for microtubule hyperstabilization is determined by cell death inducer C19ORF5,” Cancer Research, vol. 65, no. 5, pp. 1830–1838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. S. Song, J. S. Chang, S. J. Song, T. H. Yang, H. Lee, and D. S. Lim, “The centrosomal protein RAS association domain family protein 1A (RASSF1A)-binding protein 1 regulates mitotic progression by recruiting RASSF1A to spindle poles,” Journal of Biological Chemistry, vol. 280, no. 5, pp. 3920–3927, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. L. Fenton, A. Dallol, A. Agathanggelou et al., “Identification of the E1A-regulated transcription factor p120 E4F as an interacting partner of the RASSF1A candidate tumor suppressor gene,” Cancer Research, vol. 64, no. 1, pp. 102–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Ahmed-Choudhury, A. Agathanggelou, S. L. Fenton et al., “Transcriptional regulation of cyclin A2 by RASSF1A through the enhanced binding of p120E4F to the cyclin A2 promoter,” Cancer Research, vol. 65, no. 7, pp. 2690–2697, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Shivakumar, J. Minna, T. Sakamaki, R. Pestell, and M. A. White, “The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation,” Molecular and Cellular Biology, vol. 22, no. 12, pp. 4309–4318, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. H. J. Oh, K. K. Lee, S. J. Song et al., “Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis,” Cancer Research, vol. 66, no. 5, pp. 2562–2569, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Praskova, A. Khoklatchev, S. Ortiz-Vega, and J. Avruch, “Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras,” Biochemical Journal, vol. 381, no. 2, pp. 453–462, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Khokhlatchev, S. Rabizadeh, R. Xavier et al., “Identification of a novel Ras-regulated proapoptotic pathway,” Current Biology, vol. 12, no. 4, pp. 253–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Matallanas, D. Romano, K. Yee et al., “RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein,” Molecular Cell, vol. 27, no. 6, pp. 962–975, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Halder and R. L. Johnson, “Hippo signaling: growth control and beyond,” Development, vol. 138, no. 1, pp. 9–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Y. Fu, S. K. Sukumaran, and V. C. Yu, “Inhibition of ubiquitin-mediated degradation of MOAP-1 by apoptotic stimuli promotes Bax function in mitochondria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 24, pp. 10051–10056, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Rampino, H. Yamamoto, Y. Ionov et al., “Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype,” Science, vol. 275, no. 5302, pp. 967–969, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Yamamoto, F. Itoh, H. Fukushima et al., “Frequent bax frameshift mutations in gastric cancer with high but not low microsatellite instability,” Journal of Experimental and Clinical Cancer Research, vol. 18, no. 1, pp. 103–106, 1999. View at Google Scholar · View at Scopus
  46. L. C. Li and R. Dahiya, “MethPrimer: designing primers for methylation PCRs,” Bioinformatics, vol. 18, no. 11, pp. 1427–1431, 2002. View at Google Scholar · View at Scopus
  47. “dbSNP Short genetic variations,” NCBI, 2012, http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?showRare=on&chooseRs=coding&go=Go&locusId=64112.
  48. “Transcript: MOAP1-001 (ENST00000298894),” Ensembl, 2012, http://www.ensembl.org/Homo_sapiens/Transcript/ProtVariations?g=ENSG00000165943;peptide=ENSP00000298894;r=14:93648541-93651273;t=ENST00000298894.
  49. X. Wei, V. Walia, J. C. Lin et al., “Exome sequencing identifies GRIN2A as frequently mutated in melanoma,” Nature Genetics, vol. 43, no. 5, pp. 442–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. J. I. Machiya, Y. Shibata, K. Yamauchi et al., “Enhanced expression of MafB inhibits macrophage apoptosis induced by cigarette smoke exposure,” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 4, pp. 418–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Tomita, G. Caramori, S. Lim et al., “Increased p21CIP1/WAF1 and B cell lymphoma leukemia-xL expression and reduced apoptosis in alveolar macrophages from smokers,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 5, pp. 724–731, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. H. A. Ghazaleh, R. S. Chow, S. L. Choo et al., “14-3-3 Mediated regulation of the tumor suppressor protein, RASSF1A,” Apoptosis, vol. 15, no. 2, pp. 117–127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. M. D. Vos, A. Dallol, K. Eckfeld et al., “The RASSF1A tumor suppressor activates bax via MOAP-1,” Journal of Biological Chemistry, vol. 281, no. 8, pp. 4557–4563, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. N. P. C. Allen, H. Donninger, M. D. Vos et al., “RASSF6 is a novel member of the RASSF family of tumor suppressors,” Oncogene, vol. 26, no. 42, pp. 6203–6211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. S. S. Lee, N. Y. Fu, S. K. Sukumaran, K. F. Wan, Q. Wan, and V. C. Yu, “TRIM39 is a MOAP-1-binding protein that stabilizes MOAP-1 through inhibition of its poly-ubiquitination process,” Experimental Cell Research, vol. 315, no. 7, pp. 1313–1325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Ozato, D. M. Shin, T. H. Chang, and H. C. Morse, “TRIM family proteins and their emerging roles in innate immunity,” Nature Reviews Immunology, vol. 8, no. 11, pp. 849–860, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. R. J. Deshaies and C. A. P. Joazeiro, “RING domain E3 ubiquitin ligases,” Annual Review of Biochemistry, vol. 78, pp. 399–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. A. F. Santidrián, D. M. González-Gironès, D. Iglesias-Serret et al., “AICAR induces apoptosis independently of AMPK and p53 through up-regulation of the BH3-only proteins BIM and NOXAin chronic lymphocytic leukemia cells,” Blood, vol. 116, no. 16, pp. 3023–3032, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Wang, W. Tan, D. Guo, X. Zhu, K. Qian, and S. He, “Altered expression of signaling genes in jurkat cells upon FTY720 induced apoptosis,” International Journal of Molecular Sciences, vol. 11, no. 9, pp. 3087–3105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Suzuki, X. K. Li, S. Enosawa, and T. Shinomiya, “A new immunosuppressant, FTY720, induces bcl-2-associated apoptotic cell death in human lymphocytes,” Immunology, vol. 89, no. 4, pp. 518–523, 1996. View at Google Scholar · View at Scopus
  61. H. Azuma, S. Takahara, N. Ichimaru et al., “Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent, FTY720, in mouse breast cancer models,” Cancer Research, vol. 62, no. 5, pp. 1410–1419, 2002. View at Google Scholar · View at Scopus
  62. J. D. Wang, S. Takahara, N. Nonomura et al., “Early induction of apoptosis in androgen-independent prostate cancer cell line by FTY720 requires caspase-3 activation,” Prostate, vol. 1, pp. 50–55, 1999. View at Google Scholar
  63. T. Shinomiya, X. K. Li, H. Amemiya, and S. Suzuki, “An immunosuppressive agent, FTY720, increases intracellular concentration of calcium ion and induces apoptosis in HL-60,” Immunology, vol. 91, no. 4, pp. 594–600, 1997. View at Google Scholar · View at Scopus
  64. T. Matsuda, H. Nakajima, I. Fujiwara, N. Mizuta, and T. Oka, “Caspase requirement for the apoptotic death of WR19L-induced by FTY720,” Transplantation Proceedings, vol. 30, no. 5, pp. 2355–2357, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Musunuru and R. B. Darnell, “Paraneoplastic neurologic disease antigens: RNA-binding proteins and signaling proteins in neuronal degeneration,” Annual Review of Neuroscience, vol. 24, pp. 239–262, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. W. K. Roberts and R. B. Darnell, “Neuroimmunology of the paraneoplastic neurological degenerations,” Current Opinion in Immunology, vol. 16, no. 5, pp. 616–622, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Schüller, D. Jenne, and R. Voltz, “The human PNMA family: novel neuronal proteins implicated in paraneoplastic neurological disease,” Journal of Neuroimmunology, vol. 169, no. 1-2, pp. 172–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Dalmau, S. H. Gultekin, R. Voltz et al., “Ma1, a novel neuron- and testis-specific protein, is recognized by the serum of patients with paraneoplastic neurological disorders,” Brain, vol. 122, no. 1, pp. 27–39, 1999. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Voltz, S. H. Gultekin, M. R. Rosenfeld et al., “A serologic marker of paraneoplastic limbic and brain-stem encephalitis in patients with testicular cancer,” The New England Journal of Medicine, vol. 340, no. 23, pp. 1788–1795, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. M. R. Rosenfeld, J. G. Eichen, D. F. Wade, J. B. Posner, and J. Dalmau, “Molecular and clinical diversity in paraneoplastic immunity to Ma proteins,” Annals of Neurology, vol. 50, no. 3, pp. 339–348, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Takaji, Y. Komatsu, A. Watakabe, T. Hashikawa, and T. Yamamori, “Paraneoplastic antigen-like 5 gene (PNMA5) is preferentially expressed in the association areas in a primate specific manner,” Cerebral Cortex, vol. 19, no. 12, pp. 2865–2879, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. L. A. Hoffmann, S. Jarius, H. L. Pellkofer et al., “Anti-Ma and anti-Ta associated paraneoplastic neurological syndromes: 22 newly diagnosed patients and review of previous cases,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 7, pp. 767–773, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. H. L. Chen and S. R. D'Mello, “Induction of neuronal cell death by paraneoplastic Ma1 antigen,” Journal of Neuroscience Research, vol. 88, no. 16, pp. 3508–3519, 2010. View at Publisher · View at Google Scholar · View at Scopus