Mediators of Inflammation
 Journal metrics
See full report
Acceptance rate24%
Submission to final decision75 days
Acceptance to publication21 days
CiteScore7.000
Journal Citation Indicator0.540
Impact Factor4.529

Therapeutic Role and Potential Mechanism of Resveratrol in Atherosclerosis: TLR4/NF-κB/HIF-1α

Read the full article

 Journal profile

Mediators of Inflammation publishes papers on all types of inflammatory mediators, including cytokines, histamine, bradykinin, prostaglandins, leukotrienes, PAF, biological response modifiers and the family of cell adhesion-promoting molecules

 Editor spotlight

Chief Editor, Professor Agrawal, is an Assistant Clinical Professor of the Division of Basic and Clinical Immunology. Dr. Agrawal's research focuses on the dendritic cells of the immune system in the context of aging and autoimmunity.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Focusing on scRNA-seq-Derived T Cell-Associated Genes to Identify Prognostic Signature and Immune Microenvironment Status in Low-Grade Glioma

Background. The clinical outcomes of low-grade glioma (LGG) are associated with T cell infiltration, but the specific contribution of heterogeneous T cell types remains unclear. Method. To study the different functions of T cells in LGG, we mapped the single-cell RNA sequencing results of 10 LGG samples to obtain T cell marker genes. In addition, bulk RNA data of 975 LGG samples were collected for model construction. Algorithms such as TIMER, CIBERSORT, QUANTISEQ, MCPCOUTER, XCELL, and EPIC were used to depict the tumor microenvironment landscape. Subsequently, three immunotherapy cohorts, PRJEB23709, GSE78820, and IMvigor210, were used to explore the efficacy of immunotherapy. Results. The Human Primary Cell Atlas was used as a reference dataset to identify each cell cluster; a total of 15 cell clusters were defined and cells in cluster 12 were defined as T cells. According to the distribution of T cell subsets (CD4+ T cell, CD8+ T cell, Naïve T cell, and Treg cell), we selected the differentially expressed genes. Among the CD4+ T cell subsets, we screened 3 T cell-related genes, and the rest were 28, 4, and 13, respectively. Subsequently, according to the T cell marker genes, we screened six genes for constructing the model, namely, RTN1, HERPUD1, MX1, SEC61G, HOPX, and CHI3L1. The ROC curve showed that the predictive ability of the prognostic model for 1, 3, and 5 years was 0.881, 0.817, and 0.749 in the TCGA cohort, respectively. In addition, we found that risk scores were positively correlated with immune infiltration and immune checkpoints. To this end, we obtained three immunotherapy cohorts to verify their predictive ability of immunotherapy effects and found that high-risk patients had better clinical effects of immunotherapy. Conclusion. This single-cell RNA sequencing combined with bulk RNA sequencing may elucidate the composition of the tumor microenvironment and pave the way for the treatment of low-grade gliomas.

Research Article

Safety and Efficacy of Polyetheretherketone (PEEK) Cages and Cadaveric Allografts in Transforaminal Lumbar Interbody Fusion (TLIF) for Treating Lumbar Pyogenic Spondylodiscitis

Purpose. There have been many studies in the operative management of pyogenic spondylodiscitis with foreign materials. However, it still remains an issue of debate on whether the allografts may be used in pyogenic spondylodiscitis. This study sought to evaluate the safety and effectiveness of PEEK cages and the cadaveric allograft in transforaminal lumbar interbody fusion (TLIF) for treating lumbar pyogenic spondylodiscitis. Methods. From January 2012 to December 2019, 56 patients underwent surgery for lumbar pyogenic spondylodiscitis. The posterior debridement of all patients and their fusion with allografts, local bone grafts, and bone chip cages were performed before posterior pedicle screw fusion. An assessment of the residual pain, the grade of neurological injury, and the resolution of infection was conducted on 39 patients. The clinical outcome was evaluated using a visual analog scale (VAS) and the Oswestry Disability Index (ODI), and neurological outcomes were appraised based on Frankel grades. The radiological outcomes were evaluated via focal lordosis, lumbar lordosis, and the state of the fusion. Results. Staphylococcus aureus and Staphylococcus epidermidis were the most common causative organisms. The mean preoperative focal lordosis was −1.2° (−11.4° to 5.7°), and the mean postoperative focal lordosis increased to 10.3° (4.3°–17.2°). At the final follow-up, there were five cases with subsidence of the cage, no case of recurrence, and no case with cage and screw loosening or migration. The mean preoperative VAS and ODI scores were 8.9 and 74.6%, respectively, and improvements in VAS and ODI were and , respectively. The Frankel grade D was found in 10 patients and grade C in 7. Following the final follow-up, only one patient improved from Frankel grade C to grade D while the others recovered completely. Conclusion. The PEEK cage and cadaveric allograft combined with local bone grafts is a safe and effective choice for intervertebral fusion and restoring sagittal alignment without increased incidence of relapse for treating lumbar pyogenic spondylodiscitis.

Research Article

TMEM33 as a Prognostic Biomarker of Cervical Cancer and Its Correlation with Immune Infiltration

In women all over the world, cervical cancer (CC) ranks as the fourth most common form of cancer to be diagnosed. It was previously reported that transmembrane protein 33(TMEM33) could report a poor prognosis in several cancers. The current study is aimed at investigating the potential prognostic value of TMEM33 and its relevance to the tumor microenvironment in CC in a comprehensive manner. In this study, CC specimens presented noticeably higher TMEM33 expression level in comparison to nontumor specimens. In pan-cancer assays, it was found that TMEM33 was present at a high level in many different kinds of tumors. We found that patients with CC patients who had a high TMEM33 expression presented worse overall survival (OS) and disease-free survival (DFS) relative to patients who had a low TMEM33 expression. According to the results of a multivariate analysis, a high level of TMEM33 expression can significantly and independently predict the prognosis of CC. The levels of TMEM33 were found to have a negative correlation with resting dendritic cells, resting mast cells, plasma cells, T cells CD8, T cells regulatory, and regulatory T cells. Finally, we confirmed that TMEM33 was overexpressed in CC cells, and its knockdown distinctly suppressed the proliferation and invasion of CC cells. Overall, we provided evidences that TMEM33 could be used as a potential biomarker to assess the prognosis and the level of immune infiltration in CC.

Research Article

Neutrophil-Derived IL-6 Potentially Drives Ferroptosis Resistance in B Cells in Lupus Kidney

Ferroptosis resistance is vital for B cell development, especially in inflammatory diseases, yet the underlying mechanism is still unclear. In this study, based on the scRNA-seq technique and flow cytometry, we discovered a proportion of neutrophils exhibited upregulated expression of the IL-6 and correlated with the expression of IL-6 receptor and SLC7A11 from B cells in lupus kidney. Moreover, we identified that in lupus kidney, neutrophils could provide IL-6 to facilitate ferroptosis resistance in B cells via SLC7A11, and inhibition of SLC7A11 could significantly enhance ferroptosis in B cells and could decrease B cell proliferation. This study helps understand the crosstalk between neutrophils and B cells in the kidney in the development of lupus.

Research Article

GATA6-AS1 via Sponging miR-543 to Regulate PTEN/AKT Signaling Axis Suppresses Cell Proliferation and Migration in Gastric Cancer

Gastric cancer (GC) is one of the most common and lethal cancers worldwide. In view of the prominent roles of long noncoding RNAs (lncRNAs) in cancers, we investigated the specific role and underlying mechanism of GATA binding protein 6 antisense RNA 1 (GATA6-AS1) in GC. Quantitative real-time polymerase chain reaction (qRT-PCR) detected GATA6-AS1 expression in GC cell lines. Functional assays were conducted to explore the role of GATA6-AS1 in GC. Furthermore, mechanism investigations were implemented to uncover the interaction among GATA6-AS1, microRNA-543 (miR-543), and phosphatase and tensin homolog (PTEN). In the present study, it was found that GATA6-AS1 expression is significantly downregulated in GC cell lines. Functionally, GATA6-AS1 markedly suppresses GC cell growth and migration in vitro and in vivo tumorigenesis. Besides tumor suppressor, GATA6-AS1 serves as a miR-543 sponge. Specifically speaking, GATA6-AS1 acts as a competing endogenous RNA (ceRNA) of miR-543 to upregulate the expression of PTEN, thus inactivating AKT signaling pathway to inhibit GC progression. In conclusion, this study has manifested that GATA6-AS1 inhibits GC cell proliferation and migration as a sponge of miR-543 by regulating PTEN/AKT signaling axis, offering new perspective into developing novel GC therapies.

Research Article

Dihydromyricetin Inhibits M1 Macrophage Polarization in Atherosclerosis by Modulating miR-9-Mediated SIRT1/NF-κB Signaling Pathway

Dihydromyricetin (DMY), a natural flavonoid compound extracted from the stems and leaves of Ampelopsis grossedentata, has been found as a potential therapeutic chemical for treating atherosclerosis. This study explores the underlying mechanism of DMY repressing M1 macrophage polarization in atherosclerosis. We showed that DMY treatment markedly decreased M1 macrophage markers (e.g., Tnf-α and IL-1β) and p65-positive macrophage numbers in the vessel wall of Apoe-deficient (Apoe–/–) mice. Overexpression of miR-9 or knockdown of SIRT1 in macrophages reversed the effect of DMY on M1 macrophage polarization. The data we presented in the study indicate that the miR-9-mediated SIRT1/NF-κB pathway plays a pivotal role in M1 macrophage polarization and is one of the molecular mechanisms underlying the anti-atherosclerosis effects of DMY. We provide new solid evidence that DMY may be explored as a potential therapeutic adjuvant for treating atherosclerosis.

Mediators of Inflammation
 Journal metrics
See full report
Acceptance rate24%
Submission to final decision75 days
Acceptance to publication21 days
CiteScore7.000
Journal Citation Indicator0.540
Impact Factor4.529
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.