Mediators of Inflammation
 Journal metrics
Acceptance rate36%
Submission to final decision53 days
Acceptance to publication29 days
CiteScore6.000
Impact Factor3.758

Long-Term Follow-Up, Association between CARD15/NOD2 Polymorphisms, and Clinical Disease Behavior in Crohn’s Disease Surgical Patients

Read the full article

 Journal profile

Mediators of Inflammation publishes papers on all types of inflammatory mediators, including cytokines, histamine, bradykinin, prostaglandins, leukotrienes, PAF, biological response modifiers and the family of cell adhesion-promoting molecules

 Editor spotlight

Chief Editor, Professor Agrawal, is an Assistant Clinical Professor of the Division of Basic and Clinical Immunology. Dr. Agrawal's research focuses on the dendritic cells of the immune system in the context of aging and autoimmunity.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Laboratory Predictors of COVID-19 Mortality: A Retrospective Analysis from Tongji Hospital in Wuhan

Background. Novel coronavirus disease 2019 (COVID-19), an acute respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly progressed to a global pandemic. Currently, there are limited effective medications approved for this deadly disease. Objective. To investigate the potential predictors of COVID-19 mortality and risk factors for hyperinflammation in COVID-19. Methods. Retrospective analysis was carried out in 1,149 patients diagnosed with COVID-19 in Tongji Hospital, Wuhan, China, from 1/13/2020 to 3/15/2020. Results. We found significant differences in the rates of hyperuricemia (OR: 3.17, 95% CI: 2.13-4.70; ) and hypoalbuminemia (OR: 5.68, 95% CI: 3.97-8.32; ) between deceased and recovered patients. The percentages of hyperuricemia in deceased patients and recovered patients were 23.6% and 8.9%, respectively, which were higher than the reported age-standardized prevalence of 6.2% in Chinese population. Of note, the percentages of both IL-6 and uric acid levels in survived COVID-19 patients were above 90%, suggesting that they might be good specificity for indicators of mortality in COVID-19 patients. The serum level of uric acid (UA) was positively associated with ferritin, TNF-α, and IL-6 but not with anti-inflammatory cytokine IL-10. In addition, the levels of these proinflammatory cytokines in COVID-19 patients showed a trend of reduction after uric acid lowering therapy. Conclusions. Our results suggest that uric acid, the end product of purine metabolism, was increased in deceased patients with COVID-19. In addition, the serum level of uric acid was positively associated with inflammatory markers. Uric acid lowering therapy in COVID-19 patients with hyperuricemia may be beneficial.

Research Article

Effect of Short-Term Tacrolimus Exposure on Rat Liver: An Insight into Serum Antioxidant Status, Liver Lipid Peroxidation, and Inflammation

Tacrolimus (TAC) is an immunosuppressive drug, optimally used for liver, kidney, and heart transplant to avoid immune rejection. In retrospect, a multitude of studies have reported effects of TAC, such as nephrotoxicity, diabetes, and other complications. However, limited information is available regarding short-term exposure of TAC on the liver. Therefore, the present study was designed to unravel the effects of short-term exposure of TAC on a rat model. The animal model was established by TAC administration for 6, 12, 24, and 48 h time points. Liver histopathological changes were observed with PAS-D, reticulin stain, and immunostaining of PCNA and CK-7 coupled with glycogen quantification in a liver homogenate. TUNEL assay was performed to evaluate the DNA damage in the liver. Concentration of GSH and activities of SOD and CAT in the serum were measured to assess the antioxidant status, whereas liver tissue MDA level was measured as a biomarker of oxidative stress. Hepatic gene expression analysis of IL-10, IL-13, SOCS-2, and SOCS-3 was performed by RT-PCR. Results revealed marked changes in liver architecture of all TAC-treated groups, as evidenced by sinusoid dilation, hepatocyte derangement, glycogen deposition, and collapsed reticulin fibers. Significant increase in PCNA and CK-7 immunostaining along with the presence of TUNEL-positive cells was revealed in treatment groups as compared to the control group. Serum antioxidant enzyme status was markedly decreased, whereas the liver MDA level was increased in TAC treatment groups indicating oxidative stress induction. The gene expression profile of cytokines was significantly upregulated in treatment groups highlighting an inflammatory response. In conclusion, results of the current study propose that even a short-term TAC exposure can induce change in antioxidant status and lipid peroxidation. Therefore, these factors should be considered to avoid and minimize immunosuppression-related issues in a prolonged course of treatment.

Research Article

Dysregulation of Innate Lymphoid Cells in Patients with Active Rheumatoid Arthritis and Mice with Collagen-Induced Arthritis

Innate lymphoid cells (ILCs) have roles in many diseases and immune pathways. To determine the roles of these cells in patients with rheumatoid arthritis (RA) and mice with collagen-induced arthritis (CIA), we measured ILC subsets using flow cytometry and multiplex immunofluorescence staining. Patients with stable RA had greater proportions of ILC2s and decreased proportions of ILC1s and ILC3s (all ). The 28-joint disease activity (DAS28) score had positive correlations with the proportion of ILC1s and negative correlations with ILC2s (both ). ILC2s of patients with RA expressed more IL-4 than healthy controls (). The proportions of ILC1s and ILC2s were greater in mice with CIA (both ), especially the ILC2s in mice without arthritis after immunization and had correlations with multiple inflammatory and anti-inflammatory cytokines. Multiplex immunofluorescence staining described the distribution of ILCs in spleen tissues. Our results indicate that dysregulation of ILCs occurs during the pathogenesis of RA and CIA.

Research Article

Antituberculosis Drugs (Rifampicin and Isoniazid) Induce Liver Injury by Regulating NLRP3 Inflammasomes

Patients being treated for pulmonary tuberculosis often suffer liver injury due to the effects of anti-TB drugs, and the underlying mechanisms for those injuries need to be clarified. In this study, rats and hepatic cells were administrated isoniazid (INH) and rifampin (RIF) and then treated with NLRP3-inflammasome inhibitors (INF39 and CP-456773) or NLRP3 siRNA. Histopathological changes that occurred in liver tissue were examined by H&E staining. Additionally, the levels IL-33, IL-18, IL-1β, NLRP3, ASC, and cleaved-caspase 1 expression in the liver tissues were also determined. NAT2 and CYP2E1 expression were identified by QRT-PCR analysis. Finally, in vitro assays were performed to examine the effects of siRNA targeting NLRP3. Treatment with the antituberculosis drugs caused significant liver injuries, induced inflammatory responses and oxidative stress (OS), activated NLRP3 inflammasomes, reduced the activity of drug-metabolizing enzymes, and altered the antioxidant defense system in rats and hepatic cells. The NLRP3 inflammasome was required for INH- and RIF-induced liver injuries that were produced by inflammatory responses, OS, the antioxidant defense system, and drug-metabolizing enzymes. This study indicated that the NLRP3 inflammasome is involved in antituberculosis drug-induced liver injuries (ATLIs) and suggests NLRP3 as a potential target for attenuating the inflammation response in ATLIs.

Research Article

Angelica Polysaccharide Ameliorates Sepsis-Induced Acute Lung Injury through Inhibiting NLRP3 and NF-κB Signaling Pathways in Mice

Objective. This study aimed to explore the role of angelica polysaccharide (AP) in sepsis-induced acute lung injury (ALI) and its underlying molecular mechanism. Methods. A sepsis model of cecal ligation and puncture (CLP) in male BALB/C mice was used. Then, 24 h after CLP, histopathological changes in lung tissue, lung wet/dry weight ratio, and inflammatory cell infiltration were analyzed. Next, levels of inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-18), as well as the activity of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH), were measured to assess the role of AP. The protein expression of NF-κB p65, p-NF-κB p65, IκBα, p-IκBα, nucleotide-binding domain- (NOD-) like receptor protein 3 (NLRP3), ASC, and caspase-1 was detected by western blot. In addition, the expression of p-NF-κB p65 and NLRP3 was detected by immunohistochemistry. Results. AP treatment ameliorated CLP-induced lung injury and lung edema, as well as decreased the number of total cells, neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF). AP reduced the levels of TNF-α, IL-1β, IL-6, and IL-18 in BALF, as well as in serum. Moreover, AP decreased MPO activity and MDA content, whereas increased SOD and GSH levels. AP inhibited the expression of p-NF-κB p65, p-IκBα, NLRP3, ASC, and caspase-1, while promoted IκBα expression. Conclusion. This study demonstrated that AP exhibits protective effects against sepsis-induced ALI by inhibiting NLRP3 and NF-κB signaling pathways in mice.

Research Article

Exploratory Investigation of Intestinal Structure and Function after Stroke in Mice

Stroke is the second leading cause of death worldwide. Patients who have a stroke are susceptible to many gastrointestinal (GI) complications, such as dysphagia, GI bleeding, and fecal incontinence. However, there are few studies focusing on the GI tract after stroke. The current study is to investigate the changes of intestinal structure and function in mice after ischemic stroke. Ischemic stroke was made as a disease model in mice, in which brain and ileal tissues were collected for experiments on the 1st and 7th day after stroke. Intestinal motility of mice was inhibited, and intestinal permeability was increased after stroke. Hematoxylin-eosin (HE) staining showed the accumulation of leucocytes in the intestinal mucosa. Myeloperoxidase (MPO) activity and inflammatory proteins (nuclear factor kappa-B (NF-κB), inducible nitric oxide synthase (iNOS)) in the small intestine were significantly increased in mice after stroke. The expression of tight junction (TJ) proteins (zonula occludens-1 (ZO-1), occludin, and claudin-1) was downregulated, and transmission electron microscopy (TEM) showed broken TJ of the intestinal mucosa after stroke. Glial fibrillary acidic protein (GFAP) and the apoptosis-associated proteins (tumor necrosis factor (TNF-α), caspase-3, and cleaved caspase-3) were notably upregulated as well. Ischemic stroke led to negative changes on intestinal structure and function. Inflammatory mediators and TNF-α-induced death receptor signaling pathways may be involved and disrupt the small intestinal barrier function. These results suggest that stroke patients should pay attention to GI protection.

Mediators of Inflammation
 Journal metrics
Acceptance rate36%
Submission to final decision53 days
Acceptance to publication29 days
CiteScore6.000
Impact Factor3.758
 Submit