Mediators of Inflammation

Mediators of Inflammation / 1995 / Article

Open Access

Volume 4 |Article ID 623457 | https://doi.org/10.1155/S0962935195000421

M. Dias-Baruffi, M. C. Roque-Barreira, F. Q. Cunha, S. H. Ferreira, "Biological characterization of purified macrophage-derived neutrophil chemotactic factor", Mediators of Inflammation, vol. 4, Article ID 623457, 7 pages, 1995. https://doi.org/10.1155/S0962935195000421

Biological characterization of purified macrophage-derived neutrophil chemotactic factor

Abstract

We have recently described the purification of a 54 kDa acidic protein, identified as macrophage-derived neutrophil chemotactic factor (MNCF). This protein causes in vitro chemotaxis as well as in vivo neutrophil migration even in animals treated with dexamethasone. This in vivo chemotactic activity of MNCF in animals pretreated with dexamethasone is an uncommon characteristic which discriminates MNCF from known chemotactic cytokines. MNCF is released in the supernatant by macrophage monolayers stimulated with lipopolysaccharide (LPS). In the present study, we describe some biological characteristics of homogenous purified MNCF. When assayed in vitro, MNCF gave a bell-shaped dose–response curve. This in vitro activity was shown to be caused by haptotaxis. Unlike N-formyl-methionylleucyl- phenylalanine (FMLP) or interleukin 8 (IL-8), the chemotactic activity of MNCF in vivo and in vitro, was inhibited by preincubation with D-galactose but not with D-mannose. In contrast with IL-8, MNCF did not bind to heparin and antiserum against IL-8 was ineffective in inhibiting its chemotactic activity. These data indicate that MNCF induces neutrophil migration through a carbohydrate recognition property, but by a mechanism different from that of the known chemokines. It is suggested that MNCF may be an important mediator in the recruitment of neutrophils via the formation of a substrate bound chemotactic gradient (haptotaxis) in the inflamed tissues.

Copyright © 1995 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views101
Downloads331
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.