Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 7 (1998), Issue 3, Pages 183-193

Topical glucocorticoids and the skin-mechanisms of action: an update

Centre for Clinical Pharmacology, University College London, The Cruciform Project, The Rayne Institute, 5 University Street, London WC1E 6JJ, UK

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The topical glucocorticoids (GCs) represent the treatment of choice for many types of inflammatory dermatoses. Despite the extensive use of this class of drugs as first line therapy the mechanism of their action is uncertain. It is clear that the multiplicity of actions of the topical GCs is an important facet of their scope in the treatment of dermal disorders. The aim of this update is to review past and current theories regarding how these agents might work. Current understanding of the molecular mechanism s of GC action has advanced significantly over the past decade with the realisation that multiple systems are responsible for transduction of GC effects at a molecular level. The two primary modes of action are via interaction directly with DNA or indirectly through modulation of specific transcription factors: the endpoint in both cases being modulation of specific protein synthesis. Both of these mechanisms will be discussed. In particular this review will concentrate on the possibility that a GC-inducible protein, termed lipocortin 1, may have a significant role to play in the anti-inflammatory actions of these drugs. Additionally it has become apparent that several inflammatory enzymes induced in inflamm ation are sites of inhibitory action of the GCs, and the possibility that this occurs in the skin will be discussed paying particular attention to the inducible phospholipase A2, nitric oxide synthase and cyclooxygenase systems.