Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2005, Issue 1, Pages 39-49

Immunomodulatory Effects of the Tityus serrulatus Venom on Murine Macrophage Functions in Vitro

1Facultad de Medicina de la Universidad Autonoma del Estado de Morelos, Cuernavaca 62210, Mexico
2Immunochemistry Laboratory, Butantan Institute, São Paulo 055503-900, Brazil
3Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo 055503-900, Brazil

Received 27 September 2004; Accepted 29 October 2004

Copyright © 2005 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Tityus serrulatus scorpion venom (TSV) consists of a very complex mixture of molecules and demonstrates significant immunomodulatory activities capable of stimulating immune functions in vivo. The purpose of this study was to compare the crude TSV with fractionated toxins extracted from this venom in order to determine which toxin(s) presented immunomodulatory effects on peritoneal macrophages. TSV was fractionated using gel filtration chromatography resulting in 5 heterogeneous fractions. The effects of these different fractions were analysed in vitro using detection by means of cytokines, oxygen intermediate metabolites (H2O2), and nitric oxide (NO) in supernatants of peritoneal macrophages. Several functional bioassays were employed: tumor necrosis factor (TNF) activity was assayed by measuring its cytotoxic activity in L929 cells, and other cytokines were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages exposed to different fractions. In vitro studies revealed that all fractions studied here presented an increment in H2O2, NO, and cytokines levels. The more pronounced increments were observed in macrophage cultures exposed to fraction FII which demonstrated that (a) the highest levels of IL-1α, IL-β, and TNF were observed after 12 hours and that (b) the maximum levels of IFN-γ and NO were observed after 72 hours. Taken together, these data indicate that fractions have a differential immunomodulating effect on macrophage secretion, and that FII is a potent activator of TNF production of macrophages.