Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2008, Article ID 792428, 5 pages
http://dx.doi.org/10.1155/2008/792428
Review Article

Postulated Role of Vasoactive Neuropeptide-Related Immunopathology of the Blood Brain Barrier and Virchow-Robin Spaces in the Aetiology of Neurological-Related Conditions

1Gold Coast Population Health Unit, Queensland Health, Southport, Gold Coast, Queensland 4215, Australia
2Population Health and Neuroimmunology Unit, Faculty of Health Science and Medicine, Bond University, Robina, Queensland 4229, Australia

Received 17 July 2008; Accepted 16 December 2008

Academic Editor: Fulvio D'Acquisto

Copyright © 2008 D. R. Staines et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Vaudry, B. J. Gonzalez, M. Basille, L. Yon, A. Fournier, and H. Vaudry, “Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions,” Pharmacological Reviews, vol. 52, no. 2, pp. 269–324, 2000. View at Google Scholar
  2. C. J. Zhou, S. Shioda, T. Yada, N. Inagaki, S. J. Pleasure, and S. Kikuyama, “PACAP and its receptors exert pleiotropic effects in the nervous system by activating multiple signalling pathways,” Current Protein and Peptide Science, vol. 3, no. 4, pp. 423–439, 2002. View at Publisher · View at Google Scholar
  3. D. E. Brenneman, “Neuroprotection: a comparative view of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide,” Peptides, vol. 28, no. 9, pp. 1720–1726, 2007. View at Publisher · View at Google Scholar
  4. M. Delgado, J. Leceta, and D. Ganea, “Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia,” Journal of Leukocyte Biology, vol. 73, no. 1, pp. 155–164, 2003. View at Publisher · View at Google Scholar
  5. Y. Igarashi, H. Utsumi, H. Chiba et al., “Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier,” Biochemical and Biophysical Research Communications, vol. 261, no. 1, pp. 108–112, 1999. View at Publisher · View at Google Scholar
  6. A. Baranczyk-Kuzma, K. L. Audus, F. L. Guillot, and R. T. Borchardt, “Effects of selected vasoactive substances on adenylate cyclase activity in brain, isolated brain microvessels and primary cultures of brain microvessel endothelial cells,” Neurochemical Research, vol. 17, no. 2, pp. 209–214, 1992. View at Publisher · View at Google Scholar
  7. M. H. Öztürk and Ü. Aydingöz, “Comparison of MR signal intensities of cerebral perivascular (Virchow-Robin) and subarachnoid spaces,” Journal of Computer Assisted Tomography, vol. 26, no. 6, pp. 902–904, 2002. View at Publisher · View at Google Scholar
  8. M. M. Esiri and D. Gay, “Immunological and neuropathological significance of the Virchow-Robin space,” Journal of the Neurological Sciences, vol. 100, no. 1-2, pp. 3–8, 1990. View at Publisher · View at Google Scholar
  9. E. T. Zhang, C. B. E. Inman, and R. O. Weller, “Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum,” Journal of Anatomy, vol. 170, pp. 111–123, 1990. View at Google Scholar
  10. I. Bechmann, I. Galea, and V. H. Perry, “What is the blood-brain barrier (not)?” Trends in Immunology, vol. 28, no. 1, pp. 5–11, 2007. View at Publisher · View at Google Scholar
  11. N. Takeda, M. Murozono, S. Watanabe, A. Isshiki, and Y. Watanabe, “Neuroprotective effects of novel derivatives of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide in two brain ischemic models on mice,” Japanese Journal of Anesthesiology, vol. 54, no. 3, pp. 240–248, 2005. View at Google Scholar
  12. W. A. Banks, D. Uchida, A. Arimura, A. Somogyvári-Vigh, and S. Shioda, “Transport of pituitary adenylate cyclase-activating polypeptide across the blood-brain barrier and the prevention of ischemia-induced death of hippocampal neurons,” Annals of the New York Academy of Sciences, vol. 805, pp. 270–279, 1996. View at Google Scholar
  13. O. Masmoudi-Kouki, P. Gandolfo, H. Castel et al., “Role of PACAP and VIP in astroglial functions,” Peptides, vol. 28, no. 9, pp. 1753–1760, 2007. View at Publisher · View at Google Scholar
  14. M. Delgado, C. Abad, C. Martinez et al., “PACAP in immunity and inflammation,” Annals of the New York Academy of Sciences, vol. 992, pp. 141–157, 2003. View at Google Scholar
  15. S. Koga, S. Morris, S. Ogawa et al., “TNF modulates endothelial properties by decreasing cAMP,” American Journal of Physiology, vol. 268, no. 5, pp. C1104–C1113, 1995. View at Google Scholar
  16. H. Tomimoto, I. Akiguchi, H. Akiyama, J. Kimura, and T. Yanagihara, “T-cell infiltration and expression of MHC class II antigen by macrophages and microglia in a heterogeneous group in leukoencephalopathy,” American Journal of Pathology, vol. 143, no. 2, pp. 579–586, 1993. View at Google Scholar
  17. E.-T. Zhang, J. D. Mikkelsen, J. Fahrenkrug, M. Møller, D. Kronborg, and M. Lauritzen, “Prepro-vasoactive intestinal polypeptide-derived peptide sequences in cerebral blood vessels of rats: on the functional anatomy of metabolic autoregulation,” Journal of Cerebral Blood Flow & Metabolism, vol. 11, no. 6, pp. 932–938, 1991. View at Google Scholar
  18. F. Odoardi, N. Kawakami, W. E. F. Klinkert, H. Wekerle, and A. Flügel, “Blood-borne soluble protein antigen intensifies T cell activation in autoimmune CNS lesions and exacerbates clinical disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18625–18630, 2007. View at Publisher · View at Google Scholar
  19. S. Romagnani, “Regulation of the T cell response,” Clinical & Experimental Allergy, vol. 36, no. 11, pp. 1357–1366, 2006. View at Publisher · View at Google Scholar
  20. M. Delgado, A. Chorny, E. Gonzalez-Rey, and D. Ganea, “Vasoactive intestinal peptide generates CD4+CD25+ regulatory T cells in vivo,” Journal of Leukocyte Biology, vol. 78, no. 6, pp. 1327–1338, 2005. View at Publisher · View at Google Scholar
  21. J. Leceta, R. P. Gomariz, C. Martinez, M. Carrión, A. Arranz, and Y. Juarranz, “Vasoactive intestinal peptide regulates Th17 function in autoimmune inflammation,” NeuroImmunoModulation, vol. 14, no. 3-4, pp. 134–138, 2007. View at Publisher · View at Google Scholar
  22. M. Oukka, “Interplay between pathogenic Th17 and regulatory T cells,” Annals of the Rheumatic Diseases, vol. 66, supplement 3, pp. iii87–iii90, 2007. View at Publisher · View at Google Scholar
  23. I. M. Stromnes, L. M. Cerretti, D. Liggitt, R. A. Harris, and J. M. Goverman, “Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells,” Nature Medicine, vol. 14, no. 3, pp. 337–342, 2008. View at Publisher · View at Google Scholar
  24. I. Ricciardelli, K. J. Lindley, M. Londei, and S. Quaratino, “Anti tumour necrosis-α therapy increases the number of FOXP3+ regulatory T cells in children affected by Crohn's disease,” Immunology, vol. 125, no. 2, pp. 178–183, 2008. View at Publisher · View at Google Scholar
  25. A. A. Vandenbark, N. E. Culbertson, R. M. Bartholomew et al., “Therapeutic vaccination with a trivalent T-cell receptor (TCR) peptide vaccine restores deficient FoxP3 expression and TCR recognition in subjects with multiple sclerosis,” Immunology, vol. 123, no. 1, pp. 66–78, 2008. View at Publisher · View at Google Scholar
  26. J. van Horssen, L. Bö, C. M. P. Vos, I. Virtanen, and H. E. de Vries, “Basement membrane proteins in multiple sclerosis-associated inflammatory cuffs: potential role in influx and transport of leukocytes,” Journal of Neuropathology and Experimental Neurology, vol. 64, no. 8, pp. 722–729, 2005. View at Google Scholar
  27. F. W. Gay, “Early cellular events in multiple sclerosis: intimations of an extrinsic myelinolytic antigen,” Clinical Neurology and Neurosurgery, vol. 108, no. 3, pp. 234–240, 2006. View at Publisher · View at Google Scholar
  28. D. R. Staines, “Postulated vasoactive neuropeptide autoimmunity in fatigue-related conditions: a brief review and hypothesis,” Clinical and Developmental Immunology, vol. 13, no. 1, pp. 25–39, 2006. View at Publisher · View at Google Scholar
  29. T. P. Gordon, A. I. Bolstad, M. Rischmueller, R. Jonsson, and S. A. Waterman, “Autoantibodies in primary Sjögren's syndrome: new insights into mechanisms of autoantibody diversification and disease pathogenesis,” Autoimmunity, vol. 34, no. 2, pp. 123–132, 2001. View at Google Scholar
  30. M. Delgado and D. Ganea, “Inhibition of IFN-γ-induced Janus kinase-1-STAT1 activation in macrophages by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide,” The Journal of Immunology, vol. 165, no. 6, pp. 3051–3057, 2000. View at Google Scholar
  31. R. D. Broadwell and M. V. Sofroniew, “Serum proteins bypass the blood-brain fluid barriers for extracellular entry to the central nervous system,” Experimental Neurology, vol. 120, no. 2, pp. 245–263, 1993. View at Publisher · View at Google Scholar
  32. C.-A. Mueller, H. J. Schluesener, S. Conrad, R. Meyermann, and J. M. Schwab, “Spinal cord injury induces lesional expression of the proinflammatory and antiangiogenic cytokine EMAP II,” Journal of Neurotrauma, vol. 20, no. 10, pp. 1007–1015, 2003. View at Publisher · View at Google Scholar
  33. K. Shiratori, M. Mrowka, A. Toussaint, G. Spalke, and S. Bien, “Extreme, unilateral widening of Virchow-Robin spaces: case report,” Neuroradiology, vol. 44, no. 12, pp. 990–992, 2002. View at Publisher · View at Google Scholar
  34. P. M. Gross, K. M. Wall, J. J. Pang, S. W. Shaver, and D. S. Wainman, “Microvascular specializations promoting rapid interstitial solute dispersion in nucleus tractus solitarius,” American Journal of Physiology, vol. 259, no. 6, pp. R1131–R1138, 1990. View at Google Scholar
  35. P. M. Gross, “Morphology and physiology of capillary systems in subregions of the subfornical organ and area postrema,” Canadian Journal of Physiology and Pharmacology, vol. 69, no. 7, pp. 1010–1025, 1991. View at Google Scholar
  36. K. E. Nichol, R. Kim, and C. W. Cotman, “Bcl-2 family protein behavior in frontotemporal dementia implies vascular involvement,” Neurology, vol. 56, no. 11, supplement 4, pp. S35–S40, 2001. View at Google Scholar
  37. J. A. Martinac, D. K. Craft, J. H. Su, R. C. Kim, and C. W. Cotman, “Astrocytes degenerate in frontotemporal dementia: possible relation to hypoperfusion,” Neurobiology of Aging, vol. 22, no. 2, pp. 195–207, 2001. View at Publisher · View at Google Scholar
  38. A. Osawa, S. Maeshima, Y. Shimamoto et al., “Relationship between cognitive function and regional cerebral blood flow in different types of dementia,” Disability and Rehabilitation, vol. 26, no. 12, pp. 739–745, 2004. View at Publisher · View at Google Scholar
  39. T. F. Patankar, D. Mitra, A. Varma, J. Snowden, D. Neary, and A. Jackson, “Dilatation of the Virchow-Robin space is a sensitive indicator of cerebral microvascular disease: study in elderly patients with dementia,” American Journal of Neuroradiology, vol. 26, no. 6, pp. 1512–1520, 2005. View at Google Scholar
  40. S. Nakano, T. Asada, F. Yamashita et al., “Relationship between antisocial behavior and regional cerebral blood flow in frontotemporal dementia,” NeuroImage, vol. 32, no. 1, pp. 301–306, 2006. View at Publisher · View at Google Scholar
  41. M. Ichise, I. E. Salit, S. E. Abbey et al., “Assessment of regional cerebral perfusion by 99Tcm-HMPAO SPECT in chronic fatigue syndrome,” Nuclear Medicine Communications, vol. 13, no. 10, pp. 767–772, 1992. View at Publisher · View at Google Scholar
  42. K. Yoshiuchi, J. Farkas, and B. H. Natelson, “Patients with chronic fatigue syndrome have reduced absolute cortical blood flow,” Clinical Physiology and Functional Imaging, vol. 26, no. 2, pp. 83–86, 2006. View at Publisher · View at Google Scholar
  43. D. H. Lewis, H. S. Mayberg, M. E. Fischer et al., “Monozygotic twins discordant for chronic fatigue syndrome: regional cerebral blood flow SPECT,” Radiology, vol. 219, no. 3, pp. 766–773, 2001. View at Google Scholar
  44. J. Zhou, H. Kong, X. Hua, M. Xiao, J. Ding, and G. Hu, “Altered blood-brain barrier integrity in adult aquaporin-4 knockout mice,” NeuroReport, vol. 19, no. 1, pp. 1–5, 2008. View at Google Scholar
  45. S. Jarius, F. Paul, D. Franciotta et al., “Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica,” Nature Clinical Practice Neurology, vol. 4, no. 4, pp. 202–214, 2008. View at Publisher · View at Google Scholar
  46. J. Y. S. Chu, S. C. K. Chung, A. K. M. Lam, S. Tam, S. K. Chung, and B. K. C. Chow, “Phenotypes developed in secretin receptor-null mice indicated a role for secretin in regulating renal water reabsorption,” Molecular and Cellular Biology, vol. 27, no. 7, pp. 2499–2511, 2007. View at Publisher · View at Google Scholar
  47. M. Lee, S.-J. Lee, H.-J. Choi et al., “Regulation of AQP4 protein expression in rat brain astrocytes: role of P2X7 receptor activation,” Brain Research, vol. 1195, pp. 1–11, 2008. View at Publisher · View at Google Scholar