Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2009, Article ID 510254, 7 pages
http://dx.doi.org/10.1155/2009/510254
Research Article

Local C-Reactive Protein Expression in Obliterative Lesions and the Bronchial Wall in Posttransplant Obliterative Bronchiolitis

1Department of Cardiothoracic Surgery, Helsinki University Hospital, P.O. Box 340, 00029 Helsinki, Finland
2Department of Orthopedics and Traumatology, Tampere University Hospital, P.O. Box 2000, 33521 Tampere, Finland
3School of Medicine, Tampere University, 33104 Tampere, Finland
4Research Unit, Centre of Laboratory, Tampere University Hospital, P.O. BOX 2000, 33521 Tampere, Finland

Received 18 January 2009; Accepted 26 March 2009

Academic Editor: Oreste Gualillo

Copyright © 2009 Outi E. Päiväniemi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Christie, L. B. Edwards, P. Aurora et al., “Registry of the international society for heart and lung transplantation: twenty-fifth official adult lung and heart/lung transplantation report-2008,” Journal of Heart and Lung Transplantation, vol. 27, no. 9, pp. 957–969, 2008. View at Publisher · View at Google Scholar
  2. M. Estenne and M. I. Hertz, “Bronchiolitis obliterans after human lung transplantation,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 4, pp. 440–444, 2002. View at Publisher · View at Google Scholar
  3. M. B. Pepys and G. M. Hirschfield, “C-reactive protein: a critical update,” The Journal of Clinical Investigation, vol. 111, no. 12, pp. 1805–1812, 2003. View at Publisher · View at Google Scholar
  4. J. Hurlimann, G. J. Thorbecke, and G. M. Hochwald, “The liver as the site of C-reactive protein formation,” Journal of Experimental Medicine, vol. 123, no. 2, pp. 365–378, 1966. View at Publisher · View at Google Scholar
  5. A. E. Kuta and L. L. Baum, “C-reactive protein is produced by a small number of normal human peripheral blood lymphocytes,” Journal of Experimental Medicine, vol. 164, no. 1, pp. 321–326, 1986. View at Publisher · View at Google Scholar
  6. K. Yasojima, C. Schwab, E. G. McGeer, and P. L. McGeer, “Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer's disease,” Brain Research, vol. 887, no. 1, pp. 80–89, 2000. View at Publisher · View at Google Scholar
  7. J. Krupinski, M. M. Turu, J. Martinez-Gonzalez et al., “Endogenous expression of C-reactive protein is increased in active (ulcerated noncomplicated) human carotid artery plaques,” Stroke, vol. 37, no. 5, pp. 1200–1204, 2006. View at Publisher · View at Google Scholar
  8. E. E. Diehl, G. K. Haines III, J. A. Radosevich, and L. A. Potempa, “Immunohistochemical localization of modified C-reactive protein antigen in normal vascular tissue,” American Journal of the Medical Sciences, vol. 319, no. 2, pp. 79–83, 2000. View at Publisher · View at Google Scholar
  9. P. Calabró, J. T. Willerson, and E. T. H. Yeh, “Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells,” Circulation, vol. 108, no. 16, pp. 1930–1932, 2003. View at Publisher · View at Google Scholar
  10. W. J. Jabs, E. Theissing, M. Nitschke et al., “Local generation of C-reactive protein in diseased coronary artery venous bypass grafts and normal vascular tissue,” Circulation, vol. 108, no. 12, pp. 1428–1431, 2003. View at Publisher · View at Google Scholar
  11. K. Yasojima, C. Schwab, E. G. McGeer, and P. L. McGeer, “Generation of C-reactive protein and complement components in atherosclerotic plaques,” American Journal of Pathology, vol. 158, no. 3, pp. 1039–1051, 2001. View at Google Scholar
  12. A. M. Wilson, J. D. Swan, H. Ding et al., “Widespread vascular production of C-reactive protein (CRP) and a relationship between serum CRP, plaque CRP and intimal hypertrophy,” Atherosclerosis, vol. 191, no. 1, pp. 175–181, 2007. View at Publisher · View at Google Scholar
  13. P. Calabro, D. W. Chang, J. T. Willerson, and E. T. H. Yeh, “Release of C-reactive protein in response to inflammatory cytokines by human adipocytes: linking obesity to vascular inflammation,” Journal of the American College of Cardiology, vol. 46, no. 6, pp. 1112–1113, 2005. View at Publisher · View at Google Scholar
  14. J. M. Gould and J. N. Weiser, “Expression of C-reactive protein in the human respiratory tract,” Infection and Immunity, vol. 69, no. 3, pp. 1747–1754, 2001. View at Publisher · View at Google Scholar
  15. Q. Dong and J. R. Wright, “Expression of C-reactive protein by alveolar macrophages,” Journal of Immunology, vol. 156, no. 12, pp. 4815–4820, 1996. View at Google Scholar
  16. C. Agustí, A. Rañó, M. Rovira et al., “Inflammatory response associated with pulmonary complications in non-HIV immunocompromised patients,” Thorax, vol. 59, no. 12, pp. 1081–1088, 2004. View at Publisher · View at Google Scholar
  17. N. J. M. Cano, C. Pichard, H. Roth et al., “C-reactive protein and body mass index predict outcome in end-stage respiratory failure,” Chest, vol. 126, no. 2, pp. 540–546, 2004. View at Publisher · View at Google Scholar
  18. C. Casals, A. Varela, M. L. F. Ruano et al., “Increase of C-reactive protein and decrease of surfactant protein A in surfactant after lung transplantation,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 1, pp. 43–49, 1998. View at Google Scholar
  19. M. H. Uusitalo, U.-S. Salminen, T. S. Ikonen et al., “Alloimmune injury preceding airway obliteration in porcine heterotopic lung implants: a histologic and immunohistologic study,” Transplantation, vol. 68, no. 7, pp. 970–975, 1999. View at Publisher · View at Google Scholar
  20. O. E. Päiväniemi, P. K. Maasilta, H. S. Alho, C. H. J. Wolff, and U.-S. Salminen, “Cyclooxygenase-2 expression in experimental post-transplant obliterative bronchiolitis,” Journal of Pathology, vol. 204, no. 3, pp. 340–348, 2004. View at Publisher · View at Google Scholar
  21. L. M. Eerola, H. S. Alho, P. K. Maasilta et al., “Matrix metalloproteinase induction in post-transplant obliterative bronchiolitis,” Journal of Heart and Lung Transplantation, vol. 24, no. 4, pp. 426–432, 2005. View at Publisher · View at Google Scholar
  22. S. Shu, G. Ju, and L. Fan, “The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system,” Neuroscience Letters, vol. 85, no. 2, pp. 169–171, 1988. View at Publisher · View at Google Scholar
  23. P. K. Maasilta, T. L. S. Vainikka, H. S. Alho, and U.-S. Salminen, “Immune cells in a heterotopic lamb-to-pig bronchial xenograft model,” Transplant International, vol. 18, no. 9, pp. 1100–1108, 2005. View at Publisher · View at Google Scholar
  24. L. Ramage, L. Proudfoot, and K. Guy, “Expression of C-reactive protein in human lung epithelial cells and upregulation by cytokines and carbon particles,” Inhalation Toxicology, vol. 16, no. 9, pp. 607–613, 2004. View at Publisher · View at Google Scholar
  25. C. Casals, J. Arias-Díaz, F. Valiño et al., “Surfactant strengthens the inhibitory effect of C-reactive protein on human lung macrophage cytokine release,” American Journal of Physiology, vol. 284, no. 3, pp. L466–L472, 2003. View at Google Scholar
  26. U.-S. Salminen, P. K. Maasilta, E. I. Taskinen, H. S. Alho, T. S. Ikonen, and A. L. J. Harjula, “Prevention of small airway obliteration in a swine heterotopic lung allograft model,” Journal of Heart and Lung Transplantation, vol. 19, no. 2, pp. 193–206, 2000. View at Publisher · View at Google Scholar
  27. H. Luckraz, M. Goddard, K. McNeil, C. Atkinson, L. D. Sharples, and J. Wallwork, “Is obliterative bronchiolitis in lung transplantation associated with microvascular damage to small airways?” Annals of Thoracic Surgery, vol. 82, no. 4, pp. 1212–1218, 2006. View at Publisher · View at Google Scholar
  28. J. M. Tikkanen, M. Hollmén, A. I. Nykänen, J. Wood, P. K. Koskinen, and K. B. Lemström, “Role of platelet-derived growth factor and vascular endothelial growth factor in obliterative airway disease,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 10, pp. 1145–1152, 2006. View at Publisher · View at Google Scholar
  29. S. Garantziotis, S. M. Palmer, L. D. Snyder et al., “Alloimmune lung injury induced by local innate immune activation through inhaled lipopolysaccharide,” Transplantation, vol. 84, no. 8, pp. 1012–1019, 2007. View at Publisher · View at Google Scholar
  30. N. Qu, A. de Haan, M. C. Harmsen, F. G. M. Kroese, L. F. M. H. de Leij, and J. Prop, “Specific immune responses against airway epithelial cells in a transgenic mouse-trachea transplantation model for obliterative airway disease,” Transplantation, vol. 76, no. 7, pp. 1022–1028, 2003. View at Publisher · View at Google Scholar
  31. K. Ohta, R. L. Mortenson, R. A. Clark, N. Hirose, and T. E. King Jr., “Immunohistochemical identification and characterization of smooth muscle-like cells in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 152, no. 5, part 1, pp. 1659–1665, 1995. View at Google Scholar
  32. W. J. Jabs, B. A. Lögering, P. Gerke et al., “The kidney as a second site of human C-reactive protein formation in vivo,” European Journal of Immunology, vol. 33, no. 1, pp. 152–161, 2003. View at Publisher · View at Google Scholar
  33. J. Steinhoff, G. Einecke, C. Niederstadt et al., “Renal graft rejection or urinary tract infection? The value of myeloperoxidase, C-reactive protein, and a2-macroglobulin in the urine,” Transplantation, vol. 64, no. 3, pp. 443–447, 1997. View at Google Scholar
  34. D. Stolz, A. Stulz, B. Müller, A. Gratwohl, and M. Tamm, “BAL neutrophils, serum procalcitonin, and C-reactive protein to predict bacterial infection in the immunocompromised host,” Chest, vol. 132, no. 2, pp. 504–514, 2007. View at Publisher · View at Google Scholar
  35. U.-S. Salminen, P. K. Maasilta, A. L. J. Harjula, H. M. Romanska, A. E. Bishop, and J. M. Polak, “Nitric oxide in the development of obliterative bronchiolitis in a heterotopic pig model,” Transplantation, vol. 73, no. 11, pp. 1724–1729, 2002. View at Publisher · View at Google Scholar
  36. S. Norja, L. Nuutila, P. J. Karhunen, and S. Goebeler, “C-reactive protein in vulnerable coronary plaques,” Journal of Clinical Pathology, vol. 60, no. 5, pp. 545–548, 2007. View at Publisher · View at Google Scholar
  37. L. P. Nicod, “Mechanisms of airway obliteration after lung transplantation,” Proceedings of the American Thoracic Society, vol. 3, no. 5, pp. 444–449, 2006. View at Publisher · View at Google Scholar
  38. S. K. Venugopal, S. Devaraj, and I. Jialal, “Macrophage conditioned medium induces the expression of C-reactive protein in human aortic endothelial cells: potential for paracrine/autocrine effects,” American Journal of Pathology, vol. 166, no. 4, pp. 1265–1271, 2005. View at Google Scholar
  39. S. H. Yap, H. J. Moshage, B. P. C. Hazenberg et al., “Tumor necrosis factor (TNF) inhibits interleukin (IL)-1 and/or IL-6 stimulated synthesis of C-reactive protein (CRP) and serum amyloid A (SAA) in primary cultures of human hepatocytes,” Biochimica et Biophysica Acta, vol. 1091, no. 3, pp. 405–408, 1991. View at Publisher · View at Google Scholar
  40. H. S. Alho, P. K. Maasilta, A. L. Harjula, P. Hämmäinen, J. Salminen, and U.-S. Salminen, “Tumor necrosis factor-α in a porcine bronchial model of obliterative bronchiolitis,” Transplantation, vol. 76, no. 3, pp. 516–523, 2003. View at Publisher · View at Google Scholar
  41. E. A. Kallio, K. B. Lemström, P. J. Häyry, U. S. Ryan, and P. K. Koskinen, “Blockade of complement inhibits obliterative bronchiolitis in rat tracheal allografts,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 4, part 1, pp. 1332–1339, 2000. View at Google Scholar
  42. A. P. Sjöberg, L. A. Trouw, F. D. G. McGrath, C. E. Hack, and A. M. Blom, “Regulation of complement activation by C-reactive protein: targeting of the inhibitory activity of C4b-binding protein,” Journal of Immunology, vol. 176, no. 12, pp. 7612–7620, 2006. View at Google Scholar
  43. D. Gershov, S. Kim, N. Brot, and K. B. Elkon, “C-reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: implications for systemic autoimmunity,” Journal of Experimental Medicine, vol. 192, no. 9, pp. 1353–1364, 2000. View at Publisher · View at Google Scholar
  44. H. S. Alho, U.-S. Salminen, P. K. Maasilta, P. Pääkkö, and A. L. J. Harjula, “Epithelial apoptosis in experimental obliterative airway disease after lung transplantation,” Journal of Heart and Lung Transplantation, vol. 22, no. 9, pp. 1014–1022, 2003. View at Publisher · View at Google Scholar
  45. V. Pasceri, J. T. Willerson, and E. T. H. Yeh, “Direct proinflammatory effect of C-reactive protein on human endothelial cells,” Circulation, vol. 102, no. 18, pp. 2165–2168, 2000. View at Google Scholar
  46. E. T. H. Yeh, H. V. Anderson, V. Pasceri, and J. T. Willerson, “C-reactive protein: linking inflammation to cardiovascular complications,” Circulation, vol. 104, no. 9, pp. 974–975, 2001. View at Google Scholar