Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2009 (2009), Article ID 979258, 20 pages
http://dx.doi.org/10.1155/2009/979258
Review Article

Cytokines and Cytokine Profiles in Human Autoimmune Diseases and Animal Models of Autoimmunity

1Comprehensive Center for Inflammation Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
2Department of Dermatology, Venereology and Allergology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Received 28 February 2009; Revised 13 July 2009; Accepted 10 August 2009

Academic Editor: Philipp M. Lepper

Copyright © 2009 Manfred Kunz and Saleh M. Ibrahim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Carroll, “Innate immunity in the etiopathology of autoimmunity,” Nature Immunology, vol. 2, no. 12, pp. 1089–1090, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. U. Christen and M. G. von Herrath, “Initiation of autoimmunity,” Current Opinion in Immunology, vol. 16, no. 6, pp. 759–767, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. L. Fry and B. S. Baker, “Triggering psoriasis: the role of infections and medications,” Clinics in Dermatology, vol. 25, no. 6, pp. 606–615, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. M. Sospedra and R. Martin, “When T cells recognize a pattern, they might cause trouble,” Current Opinion in Immunology, vol. 18, no. 6, pp. 697–703, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. A. P. Cope and M. Feldmann, “Emerging approaches for the therapy of autoimmune and chronic inflammatory disease,” Current Opinion in Immunology, vol. 16, no. 6, pp. 780–786, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. L. Chatenoud, “Immune therapies of autoimmune diseases: are we approaching a real cure?” Current Opinion in Immunology, vol. 18, no. 6, pp. 710–717, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. P. J. Mease, “Assessment tools in psoriatic arthritis,” The Journal of Rheumatology, vol. 35, no. 7, pp. 1426–1430, 2008. View at Google Scholar · View at Scopus
  8. M. Feldmann and S. R. Maini, “Role of cytokines in rheumatoid arthritis: an education in pathophysiology and therapeutics,” Immunological Reviews, vol. 223, no. 1, pp. 7–19, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. K. Kikly, L. Liu, S. Na, and J. D. Sedgwick, “The IL-23/Th17 axis: therapeutic targets for autoimmune inflammation,” Current Opinion in Immunology, vol. 18, no. 6, pp. 670–675, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. S. Aggarwal, N. Ghilardi, M. H. Xie, F. J. de Sauvage, and A. L. Gurney, “Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17,” The Journal of Biological Chemistry, vol. 278, no. 3, pp. 1910–1914, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. V. Paunovic, H. P. Carroll, K. Vandenbroeck, and M. Gadina, “Signalling, inflammation and arthritis: crossed signals: the role of interleukin (IL)-12, -17, -23 and -27 in autoimmunity,” Rheumatology, vol. 47, no. 6, pp. 771–776, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. A. Vogelzang and C. King, “The modulatory capacity of interleukin-21 in the pathogenesis of autoimmune disease,” Frontiers in Bioscience, vol. 13, pp. 5304–5315, 2008. View at Google Scholar · View at Scopus
  13. K. L. Moser, P. M. Gaffney, M. E. Grandits et al., “The use of microarrays to study autoimmunity,” The Journal of Investigative Dermatology Symposium Proceedings, vol. 9, no. 1, pp. 18–22, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. C. H. Chung, S. Levy, P. Chaurand, and D. P. Carbone, “Genomics and proteomics: emerging technologies in clinical cancer research,” Critical Reviews in Oncology/Hematology, vol. 61, no. 1, pp. 1–25, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. C. G. Fathman, L. Soares, S. M. Chan, and P. J. Utz, “An array of possibilities for the study of autoimmunity,” Nature, vol. 435, no. 7042, pp. 605–611, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. F. Brennan and J. Beech, “Update on cytokines in rheumatoid arthritis,” Current Opinion in Rheumatology, vol. 19, no. 3, pp. 296–301, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. C. A. Murphy, C. L. Langrish, Y. Chen et al., “Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation,” The Journal of Experimental Medicine, vol. 198, no. 12, pp. 1951–1957, 2003. View at Google Scholar
  18. K. Sato, A. Suematsu, K. Okamoto et al., “Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction,” The Journal of Experimental Medicine, vol. 203, no. 12, pp. 2673–2682, 2006. View at Google Scholar
  19. S. Kotake, N. Udagawa, N. Takahashi et al., “IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis,” The Journal of Clinical Investigation, vol. 103, no. 9, pp. 1345–1352, 1999. View at Google Scholar
  20. M. Ziolkowska, A. Koc, G. Luszczykiewicz et al., “High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism,” The Journal of Immunology, vol. 164, no. 5, pp. 2832–2838, 2000. View at Google Scholar
  21. M. Chabaud, J. M. Durand, N. Buchs et al., “Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium,” Arthritis & Rheumatism, vol. 42, no. 5, pp. 963–970, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Nakae, A. Nambu, K. Sudo, and Y. Iwakura, “Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice,” The Journal of Immunology, vol. 171, no. 11, pp. 6173–6177, 2003. View at Google Scholar · View at Scopus
  23. S. Pflanz, J. C. Timans, J. Cheung et al., “IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells,” Immunity, vol. 16, no. 6, pp. 779–790, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. L. F. Su, “Updates on high-throughput molecular profiling for the study of rheumatoid arthritis,” The Israel Medical Association Journal, vol. 10, no. 4, pp. 307–309, 2008. View at Google Scholar · View at Scopus
  25. T. C. van der Pouw Kraan, F. A. van Gaalen, P. V. Kasperkovitz et al., “Rheumatoid arthritis is a heterogeneous disease: evidence for differences in the activation of the STAT-1 pathway between rheumatoid tissues,” Arthritis & Rheumatism, vol. 48, no. 8, pp. 2132–2145, 2003. View at Google Scholar
  26. K. Raza, F. Falciani, S. J. Curnow et al., “Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin,” Arthritis Research & Therapy, vol. 7, no. 4, pp. R784–R795, 2005. View at Google Scholar
  27. W. Hueber, B. A. Kidd, B. H. Tomooka et al., “Antigen microarray profiling of autoantibodies in rheumatoid arthritis,” Arthritis & Rheumatism, vol. 52, no. 9, pp. 2645–2655, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. W. Hueber, B. H. Tomooka, X. Zhao et al., “Proteomic analysis of secreted proteins in early rheumatoid arthritis: anti-citrulline autoreactivity is associated with up regulation of proinflammatory cytokines,” Annals of the Rheumatic Diseases, vol. 66, no. 6, pp. 712–719, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. L. F. Bovin, K. Rieneck, C. Workman et al., “Blood cell gene expression profiling in rheumatoid arthritis: discriminative genes and effect of rheumatoid factor,” Immunology Letters, vol. 93, no. 2-3, pp. 217–226, 2004. View at Publisher · View at Google Scholar · View at PubMed
  30. F. M. Batliwalla, E. C. Baechler, X. Xiao et al., “Peripheral blood gene expression profiling in rheumatoid arthritis,” Genes and Immunity, vol. 6, no. 5, pp. 388–397, 2005. View at Publisher · View at Google Scholar · View at PubMed
  31. S. M. Ibrahim, D. Koczan, and H. J. Thiesen, “Gene-expression profile of collagen-induced arthritis,” The Journal of Autoimmunity, vol. 18, no. 2, pp. 159–167, 2002. View at Publisher · View at Google Scholar · View at PubMed
  32. C. Lock, G. Hermans, R. Pedotti et al., “Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis,” Nature Medicine, vol. 8, no. 5, pp. 500–508, 2002. View at Publisher · View at Google Scholar · View at PubMed
  33. J. Satoh, M. Nakanishi, F. Koike et al., “Microarray analysis identifies an aberrant expression of apoptosis and DNA damage-regulatory genes in multiple sclerosis,” Neurobiology of Disease, vol. 18, no. 3, pp. 537–550, 2005. View at Publisher · View at Google Scholar · View at PubMed
  34. S. Stürzebecher, K. P. Wandinger, A. Rosenwald et al., “Expression profiling identifies responder and non-responder phenotypes to interferon-β in multiple sclerosis,” Brain, vol. 126, no. 6, pp. 1419–1429, 2003. View at Publisher · View at Google Scholar
  35. F. Sellebjerg, P. Datta, J. Larsen et al., “Gene expression analysis of interferon-β treatment in multiple sclerosis,” Multiple Sclerosis, vol. 14, no. 5, pp. 615–621, 2008. View at Publisher · View at Google Scholar · View at PubMed
  36. S. M. Ibrahim, E. Mix, T. Böttcher et al., “Gene expression profiling of the nervous system in murine experimental autoimmune encephalomyelitis,” Brain, vol. 124, no. 10, pp. 1927–1938, 2001. View at Google Scholar
  37. P. D. Katsikis, C. Q. Chu, F. M. Brennan, R. N. Maini, and M. Feldmann, “Immunoregulatory role of interleukin 10 in rheumatoid arthritis,” The Journal of Experimental Medicine, vol. 179, no. 5, pp. 1517–1527, 1994. View at Google Scholar
  38. Y. H. Hsu, H. H. Li, M. Y. Hsieh et al., “Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis,” Arthritis & Rheumatism, vol. 54, no. 9, pp. 2722–2733, 2006. View at Publisher · View at Google Scholar · View at PubMed
  39. N. Kawanaka, M. Yamamura, T. Aita et al., “CD14+, CD16+ blood monocytes and joint inflammation in rheumatoid arthritis,” Arthritis & Rheumatism, vol. 46, no. 10, pp. 2578–2586, 2002. View at Google Scholar
  40. S. M. Churchman and F. Ponchel, “Interleukin-7 in rheumatoid arthritis,” Rheumatology, vol. 47, no. 6, pp. 753–759, 2008. View at Publisher · View at Google Scholar · View at PubMed
  41. S. Harada, M. Yamamura, H. Okamoto et al., “Production of interleukin-7 and interleukin-15 by fibroblast-like synoviocytes from patients with rheumatoid arthritis,” Arthritis & Rheumatism, vol. 42, no. 7, pp. 1508–1516, 1999. View at Publisher · View at Google Scholar
  42. S. M. Ibrahim and X. Yu, “Dissecting the genetic basis of rheumatiod arthritis in mouse models,” Current Pharmaceutical Design, vol. 12, no. 9, pp. 3753–3759, 2006. View at Publisher · View at Google Scholar
  43. X. Yu, K. Bauer, P. Wernhoff, and S. M. Ibrahim, “Using an advanced intercross line to identify quantitative trait loci controlling immune response during collagen-induced arthritis,” Genes and Immunity, vol. 8, no. 4, pp. 296–301, 2007. View at Publisher · View at Google Scholar · View at PubMed
  44. K. Bauer, X. Yu, P. Wernhoff, D. Koczan, H. J. Thiesen, and S. M. Ibrahim, “Identification of new quantitative trait loci in mice with collagen-induced arthritis,” Arthritis & Rheumatism, vol. 50, no. 11, pp. 3721–3728, 2004. View at Publisher · View at Google Scholar · View at PubMed
  45. J. Jirholt, A. Cook, T. Emahazion et al., “Genetic linkage analysis of collagen-induced arthritis in the mouse,” European Journal of Immunology, vol. 28, no. 10, pp. 3321–3328, 1998. View at Publisher · View at Google Scholar
  46. S. K. Nath, J. Kilpatrick, and J. B. Harley, “Genetics of human systemic lupus erythematosus: the emerging picture,” Current Opinion in Immunology, vol. 16, no. 6, pp. 794–800, 2004. View at Publisher · View at Google Scholar · View at PubMed
  47. X. Qing and C. Putterman, “Gene expression profiling in the study of the pathogenesis of systemic lupus erythematosus,” Autoimmunity Reviews, vol. 3, no. 7-8, pp. 505–509, 2004. View at Publisher · View at Google Scholar · View at PubMed
  48. M. Centola, M. B. Frank, A. I. Bolstad et al., “Genome-scale assessment of molecular pathology in systemic autoimmune diseases using microarray technology: a potential breakthrough diagnostic and individualized therapy-design tool,” Scandinavian Journal of Immunology, vol. 64, no. 3, pp. 236–242, 2006. View at Publisher · View at Google Scholar · View at PubMed
  49. E. C. Baechler, F. M. Batliwalla, A. M. Reed et al., “Gene expression profiling in human autoimmunity,” Immunological Reviews, vol. 210, no. 1, pp. 120–137, 2006. View at Publisher · View at Google Scholar · View at PubMed
  50. K. Maas, S. Chan, J. Parker et al., “Cutting edge: molecular portrait of human autoimmune disease,” Journal of Immunology, vol. 169, no. 1, pp. 5–9, 2002. View at Google Scholar
  51. V. Rus, S. P. Atamas, V. Shustova et al., “Expression of cytokine- and chemokine-related genes in peripheral blood mononuclear cells from lupus patients by cDNA array,” Clinical Immunology, vol. 102, no. 3, pp. 283–290, 2002. View at Publisher · View at Google Scholar · View at PubMed
  52. M. Mandel, M. Gurevich, R. Pauzner et al., “Autoimmunity gene expression portrait: specific signature that intersects or differentiates between multiple sclerosis and systemic lupus erythematosus,” Clinical and Experimental Immunology, vol. 138, no. 1, pp. 164–170, 2004. View at Publisher · View at Google Scholar · View at PubMed
  53. S. Sato, M. Hasegawa, M. Fujimoto, T. F. Tedder, and K. Takehara, “Quantitative genetic variation in CD19 expression correlates with autoimmunity,” Journal of Immunology, vol. 165, no. 11, pp. 6635–6643, 2000. View at Google Scholar
  54. E. C. Baechler, F. M. Batliwalla, G. Karypis et al., “Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2610–2615, 2003. View at Publisher · View at Google Scholar · View at PubMed
  55. L. Bennett, A. K. Palucka, E. Arce et al., “Interferon and granulopoiesis signatures in systemic lupus erythematosus blood,” The Journal of Experimental Medicine, vol. 197, no. 6, pp. 711–723, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. G. M. Han, S. L. Chen, N. Shen, S. Ye, C. D. Bao, and Y. Y. Gu, “Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray,” Genes and Immunity, vol. 4, no. 3, pp. 177–186, 2003. View at Publisher · View at Google Scholar · View at PubMed
  57. A. M. Bowcock, W. Shannon, F. Du et al., “Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies,” Human Molecular Genetics, vol. 10, no. 17, pp. 1793–1805, 2001. View at Google Scholar
  58. J. L. Oestreicher, I. B. Walters, T. Kikuchi et al., “Molecular classification of psoriasis diseaseassociated genes through pharmacogenomic expression profiling,” The Pharmacogenomics Journal, vol. 1, no. 4, pp. 272–287, 2001. View at Google Scholar
  59. X. Zhou, J. G. Krueger, M. C. Kao et al., “Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array,” Physiological Genomics, vol. 13, no. 1, pp. 69–78, 2003. View at Google Scholar
  60. M. L. Whitfield, D. R. Finlay, J. I. Murray et al., “Systemic and cell type-specific gene expression patterns in scleroderma skin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12319–12324, 2003. View at Publisher · View at Google Scholar · View at PubMed
  61. A. Milano, S. A. Pendergrass, J. L. Sargent et al., “Molecular subsets in the gene expression signatures of scleroderma skin,” PLoS ONE, vol. 16, no. 3, article e2696, 2008. View at Publisher · View at Google Scholar · View at PubMed
  62. F. K. Tan, B. A. Hildebrand, M. S. Lester et al., “Classification analysis of the transcriptosome of nonlesional cultured dermal fibroblasts from systemic sclerosis patients with early disease,” Arthritis & Rheumatism, vol. 52, no. 3, pp. 865–876, 2005. View at Publisher · View at Google Scholar · View at PubMed
  63. E. Pereira, M. C. Tamia-Ferreira, R. S. Cardoso et al., “Immunosuppressive therapy modulates T lymphocyte gene expression in patients with systemic lupus erythematosus,” Immunology, vol. 113, no. 1, pp. 99–105, 2004. View at Publisher · View at Google Scholar · View at PubMed
  64. L. Xu, L. Zhang, Y. Yi, H. K. Kang, and S. K. Datta, “Human lupus T cells resist inactivation and escape death by upregulating COX-2,” Nature Medicine, vol. 10, no. 4, pp. 411–415, 2004. View at Publisher · View at Google Scholar · View at PubMed
  65. M. Østensen and P. M. Villiger, “Nonsteroidal anti-inflammatory drugs in systemic lupus erythematosus,” Lupus, vol. 10, no. 3, pp. 135–139, 2001. View at Publisher · View at Google Scholar
  66. M. K. Crow, K. A. Kirou, and J. Wohlgemuth, “Microarray analysis of interferon-regulated genes in SLE,” Autoimmunity, vol. 36, no. 8, pp. 481–490, 2003. View at Publisher · View at Google Scholar
  67. M. K. Crow, “Interferon pathway activation in systemic lupus erythematosus,” Current Rheumatology Reports, vol. 7, no. 6, pp. 463–468, 2005. View at Google Scholar
  68. V. Pascual, L. Farkas, and J. Banchereau, “Systemic lupus erythematosus: all roads lead to type I interferons,” Current Opinion in Immunology, vol. 18, no. 6, pp. 676–682, 2006. View at Publisher · View at Google Scholar · View at PubMed
  69. S. V. Skurkovich and E. I. Eremkina, “The probable role of interferon in allergy,” Annals of Allergy, vol. 35, no. 6, pp. 356–360, 1975. View at Google Scholar
  70. S. V. Skurkovich, B. Skurkovich, and J. A. Kelly, “Anticytokine therapy—new approach to the treatment of autoimmune and cytokine-disturbance diseases,” Medical Hypotheses, vol. 59, no. 6, pp. 770–780, 2002. View at Publisher · View at Google Scholar
  71. S. R. Ytterberg and T. J. Schnitzer, “Serum interferon levels in patients with systemic lupus erythematosus,” Arthritis & Rheumatism, vol. 25, no. 4, pp. 401–406, 1982. View at Google Scholar
  72. L. E. Ronnblom, G. V. Alm, and K. Oberg, “Autoimmune phenomena in patients with malignant carcinoid tumors during interferon-α treatment,” Acta Oncologica, vol. 30, no. 4, pp. 537–540, 1991. View at Google Scholar
  73. M. L. Santiago-Raber, R. Baccala, K. M. Haraldsson et al., “Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice,” The Journal of Experimental Medicine, vol. 197, no. 6, pp. 777–788, 2003. View at Publisher · View at Google Scholar · View at PubMed
  74. J. Hua, K. Kirou, C. Lee, and M. K. Crow, “Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies,” Arthritis & Rheumatism, vol. 54, no. 6, pp. 1906–1916, 2006. View at Publisher · View at Google Scholar · View at PubMed
  75. J. W. Bauer, E. C. Baechler, M. Petri et al., “Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus,” PLoS Medicine, vol. 3, no. 12, article e491, 2006. View at Publisher · View at Google Scholar · View at PubMed
  76. K. S. Peterson, J. F. Huang, J. Zhu et al., “Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli,” The Journal of Clinical Investigation, vol. 113, no. 12, pp. 1722–1733, 2004. View at Publisher · View at Google Scholar
  77. S. V. Ramagopalan, D. A. Dyment, and G. C. Ebers, “Genetic epidemiology: the use of old and new tools for multiple sclerosis,” Trends in Neurosciences, vol. 31, no. 12, pp. 645–652, 2008. View at Publisher · View at Google Scholar · View at PubMed
  78. T. Olsson, M. Jagodic, F. Piehl, and E. Wallström, “Genetics of autoimmune neuroinflammation,” Current Opinion in Immunology, vol. 18, no. 6, pp. 643–649, 2006. View at Publisher · View at Google Scholar · View at PubMed
  79. A. Fogdell-Hahn, A. Ligers, M. Gronning, J. Hillert, and O. Olerup, “Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease,” Tissue Antigens, vol. 55, no. 2, pp. 140–148, 2000. View at Publisher · View at Google Scholar
  80. H. S. Panitch, R. L. Hirsch, A. S. Haley, and K. P. Johnson, “Exacerbations of multiple sclerosis in patients treated with gamma interferon,” The Lancet, vol. 1, no. 8538, pp. 893–895, 1987. View at Google Scholar
  81. O. H. Kantarci, A. Goris, D. D. Hebrink et al., “IFNG polymorphisms are associated with gender differences in susceptibiligy to multiple sclerosis,” Genes and Immunity, vol. 6, no. 2, pp. 153–161, 2005. View at Publisher · View at Google Scholar · View at PubMed
  82. A. Vaknin-Dembinsky, K. Balashov, and H. L. Weiner, “IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production,” Journal of Immunology, vol. 176, no. 12, pp. 7768–7774, 2006. View at Google Scholar
  83. D. Matusevicius, P. Kivisäkk, B. He et al., “Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis,” Multiple Sclerosis, vol. 5, no. 2, pp. 101–104, 1999. View at Google Scholar
  84. A. Alizadeh, M. Eisen, R. E. Davis et al., “The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 64, pp. 71–78, 1999. View at Google Scholar
  85. L. A. Stone, J. A. Frank, P. S. Albert et al., “Characterization of MRI response to treatment with interferon beta-1b: contrast-enhancing MRI lesion frequency as a primary outcome measure,” Neurology, vol. 49, no. 3, pp. 862–869, 1997. View at Google Scholar
  86. J. Hong, Y. C. Zang, G. Hutton, V. M. Rivera, and J. Z. Zhang, “Gene expression profiling of relevant biomarkers for treatment evaluation in multiple sclerosis,” Journal of Neuroimmunology, vol. 152, no. 1-2, pp. 126–139, 2004. View at Publisher · View at Google Scholar · View at PubMed
  87. R. Ehling, C. Gassner, A. Lutterotti et al., “Genetic variants in the tumor necrosis factor receptor II gene in patients with multiple sclerosis,” Tissue Antigens, vol. 63, no. 1, pp. 28–33, 2004. View at Publisher · View at Google Scholar
  88. R. J. Ludwig, C. Herzog, A. Rostock et al., “Psoriasis: a possible risk factor for development of coronary artery calcification,” The British Journal of Dermatology, vol. 156, no. 2, pp. 271–276, 2007. View at Publisher · View at Google Scholar · View at PubMed
  89. J. P. Ortonne, “Psoriasis, metabolic syndrome and its components,” Annales de Dermatologie et de Vénéréologie, vol. 135, supplement 4, pp. 235–242, 2008. View at Publisher · View at Google Scholar · View at PubMed
  90. M. P. Schön and W. H. Boehncke, “Psoriasis,” The New England Journal of Medicine, vol. 352, no. 18, pp. 1899–1912, 2005. View at Publisher · View at Google Scholar · View at PubMed
  91. B. J. Nickoloff, “Cracking the cytokine code in psoriasis,” Nature Medicine, vol. 13, no. 3, pp. 242–244, 2007. View at Publisher · View at Google Scholar · View at PubMed
  92. J. D. Bos and M. A. de Rie, “The pathogenesis of psoriasis: immunological facts and speculations,” Immunology Today, vol. 20, no. 1, pp. 40–46, 1999. View at Publisher · View at Google Scholar
  93. A. M. Bowcock, “The genetics of psoriasis and autoimmunity,” Annual Review of Genomics and Human Genetics, vol. 6, pp. 93–122, 2005. View at Publisher · View at Google Scholar · View at PubMed
  94. J. G. Krueger and A. Bowcock, “Psoriasis pathophysiology: current concepts of pathogenesis,” vol. 64, supplement 2, pp. ii30–ii36. View at Publisher · View at Google Scholar · View at PubMed
  95. E. Lee, W. L. Trepicchio, J. L. Oestreicher et al., “Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris,” The Journal of Experimental Medicine, vol. 199, no. 1, pp. 125–130, 2004. View at Google Scholar
  96. G. Piskin, R. M. R. Sylva-Steenland, J. D. Bos, and M. B. M. Teunissen, “In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin,” Journal of Immunology, vol. 176, no. 3, pp. 1908–1915, 2006. View at Google Scholar
  97. Y. Zheng, D. M. Danilenko, P. Valdez et al., “Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis,” Nature, vol. 445, no. 7128, pp. 648–651, 2007. View at Publisher · View at Google Scholar · View at PubMed
  98. V. Quekenborn-Trinquet, P. Fogel, O. Aldana-Jammayrac et al., “Gene expression profiles in psoriasis: analysis of impact of body site location and clinical severity,” The British Journal of Dermatology, vol. 152, no. 3, pp. 489–504, 2005. View at Publisher · View at Google Scholar · View at PubMed
  99. D. Koczan, R. Guthke, H. J. Thiesen et al., “Gene expression profiling of peripheral blood mononuclear leukocytes from psoriasis patients identifies new immune regulatory molecules,” European Journal of Dermatology, vol. 15, no. 4, pp. 251–257, 2005. View at Google Scholar
  100. G. Li, J. Domenico, J. J. Lucas et al., “Identification of multiple cell cycle regulatory functions of p57 Kip2 in human T lymphocytes,” Journal of Immunology, vol. 173, no. 4, pp. 2383–2391, 2004. View at Google Scholar
  101. J. Reischl, S. Schwenke, J. M. Beekman, U. Mrowietz, S. Stürzebecher, and J. F. Heubach, “Increased expression of Wnt5a in psoriatic plaques,” The Journal of Investigative Dermatology, vol. 127, no. 1, pp. 163–169, 2007. View at Publisher · View at Google Scholar · View at PubMed
  102. D. R. Strehlow, “The promise of transcription profiling for understanding the pathogenesis of scleroderma,” Current Rheumatology Reports, vol. 2, no. 6, pp. 506–511, 2000. View at Google Scholar
  103. M. Hebbar, J. P. Peyrat, L. Hornez, P. Y. Hatron, E. Hachulla, and B. Devulder, “Increased concentrations of the circulating angiogenesis inhibitor endostatin in patients with systemic sclerosis,” Arthritis & Rheumatism, vol. 43, no. 4, pp. 889–893, 2000. View at Google Scholar
  104. P. Rottoli, B. Magi, M. G. Perari et al., “Cytokine profile and proteome analysis in bronchoalveolar lavage of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and idiopathic pulmonary fibrosis,” Proteomics, vol. 5, no. 5, pp. 1423–1430, 2005. View at Publisher · View at Google Scholar · View at PubMed
  105. T. Ohba, J. K. McDonald, R. M. Silver et al., “Scleroderma bronchoalveolar lavage fluid contains thrombin, a mediator of human lung fibroblast proliferation via induction of platelet-derived growth factor alpha-receptor,” The American Journal of Respiratory Cell and Molecular Biology, vol. 10, no. 4, pp. 405–412, 1994. View at Google Scholar · View at Scopus
  106. Y. Ishii, K. Hirano, Y. Morishima et al., “Early molecular and cellular events of oxidant-induced pulmonary fibrosis in rats,” Toxicology and Applied Pharmacology, vol. 167, no. 3, pp. 173–181, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. D. J. Lockhart, H. Dong, M. C. Byrne et al., “Expression monitoring by hybridization to high-density oligonucleotide arrays,” Nature Biotechnology, vol. 14, no. 3, pp. 1675–1680, 1996. View at Google Scholar · View at Scopus
  108. S. Draghici, P. Khatri, A. C. Eklund et al., “Reliability and reproducibility issues in DNA microarray measurements,” Trends in Genetics, vol. 22, no. 2, pp. 101–109, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. P. K. Tan, T. J. Downey, E. L. Spitznagel Jr. et al., “Evaluation of gene expression measurements from commercial microarray platforms,” Nucleic Acids Research, vol. 31, no. 19, pp. 5676–5684, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Reverter, S. M. McWilliam, W. Barris, and B. P. Dalrymple, “A rapid method for computationally inferring transcriptome coverage and microarray sensitivity,” Bioinformatics, vol. 21, no. 1, pp. 80–89, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. L. Shi, L. H. Reid, W. D. Jones et al., “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nature Biotechnology, vol. 24, no. 9, pp. 1151–1161, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. T. Wu and C. Mohan, “Proteomic toolbox for autoimmunity research,” Autoimmunity Reviews, vol. 8, no. 7, pp. 595–598, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. B. B. Haab, M. J. Dunham, and P. O. Brown, “Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions,” Genome Biology, vol. 2, no. 22, Article ID research0004, 2001. View at Google Scholar · View at Scopus
  114. J. Quackenbush, “Microarray data normalization and transformation,” Nature Genetics, vol. 32, pp. 496–501, 2002. View at Google Scholar · View at Scopus
  115. B. M. Bolstad, R. A. Irizarry, M. Åstrand et al., “A comparison of normalization methods for high density oligonucleotide array data based on variance and bias,” Bioinformatics, vol. 19, no. 2, pp. 185–193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  116. M. B. Eisen, P. T. Spellman, P. O. Brown et al., “Cluster analysis and display of genome-wide expression patterns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14863–14868, 1998. View at Publisher · View at Google Scholar · View at Scopus
  117. W. H. Robinson, C. DiGennaro, W. Hueber et al., “Autoantigen microarrays for multiplex characterization of autoantibody responses,” Nature Medicine, vol. 8, no. 3, pp. 295–301, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. W. Hueber and W. H. Robinson, “Proteomic biomarkers for autoimmune disease,” Proteomics, vol. 6, no. 14, pp. 4100–4105, 2006. View at Google Scholar · View at Scopus
  119. R. Biesen, C. Demir, F. Barkhudarova et al., “Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus,” Arthritis & Rheumatism, vol. 58, no. 4, pp. 1136–1145, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. T. Wu, C. Xie, H. W. Wang et al., “Elevated urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC chemokine ligand 16 in multiple murine lupus strains and human lupus nephritis,” Journal of Immunology, vol. 179, no. 10, pp. 7166–7175, 2007. View at Google Scholar
  121. J. Shou, C. M. Bull, L. Li et al., “Identification of blood biomarkers of rheumatoid arthritis by transcript profiling of peripheral blood mononuclear cells from the rat collagen-induced arthritis model,” Arthritis Research and Therapy, vol. 8, no. 1, article R28, 2006. View at Google Scholar
  122. L. A. Joosten, T. R. Radstake, E. Lubberts et al., “Association of interleukin-18 expression with enhanced levels of both interleukin-1β and tumor necrosis factor α in knee synovial tissue of patients with rheumatoid arthritis,” Arthritis & Rheumatism, vol. 48, no. 2, pp. 339–347, 2003. View at Publisher · View at Google Scholar · View at PubMed
  123. E. W. Karlson, L. B. Chibnik, S. S. Tworoger et al., “Biomarkers of inflammation and development of rheumatoid arthritis in women from two prospective cohort studies,” Arthritis & Rheumatism, vol. 60, no. 3, pp. 641–652, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. C. Scheinecker, K. Redlich, and J. S. Smolen, “Cytokines as therapeutic targets: advances and limitations,” Immunity, vol. 28, no. 4, pp. 440–444, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. A. Finckh and C. Gabay, “At the horizon of innovative therapy in rheumatology: new biologic agents,” Current Opinion in Rheumatology, vol. 20, no. 3, pp. 269–275, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  126. S. V. Skurkovich, E. G. Klinova, E. I. Eremkina, and N. V. Levina, “Immunosuppressive effect of an anti interferon serum,” Nature, vol. 22, no. 247, pp. 551–552, 1974. View at Google Scholar · View at Scopus
  127. M. Feldmann, “Development of anti-TNF therapy for rheumatoid arthritis,” Nature Reviews Immunology, vol. 2, no. 5, pp. 364–371, 2002. View at Google Scholar · View at Scopus
  128. M. J. Elliott, R. N. Maini, M. Feldmann et al., “Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis,” The Lancet, vol. 344, no. 8930, pp. 1105–1110, 1994. View at Publisher · View at Google Scholar · View at Scopus
  129. R. Maini, E. W. St Clair, F. Breedveld et al., “Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial,” The Lancet, vol. 354, no. 9194, pp. 1932–1939, 1999. View at Publisher · View at Google Scholar
  130. L. W. Moreland, S. W. Baumgartner, M. H. Schiff et al., “Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein,” The New England Journal of Medicine, vol. 337, no. 3, pp. 141–147, 1997. View at Publisher · View at Google Scholar
  131. A. den Broeder, L. van de Putte, R. Rau et al., “A single dose, placebo controlled study of the fully human anti-tumor necrosis factor-α antibody adalimumab (D2E7) in patients with rheumatoid arthritis,” The Journal of Rheumatology, vol. 29, no. 11, pp. 2288–2298, 2002. View at Google Scholar
  132. B. Bresnihan, J. M. Alvaro-Gracia, M. Cobby et al., “Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist,” Arthritis & Rheumatism, vol. 41, no. 12, pp. 2196–2204, 1998. View at Publisher · View at Google Scholar
  133. M. C. Genovese, S. Cohen, L. Moreland et al., “Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate,” Arthritis & Rheumatism, vol. 50, no. 5, pp. 1412–1419, 2004. View at Publisher · View at Google Scholar · View at PubMed
  134. M. Ratner, “IL-1 trap go-ahead,” Nature Biotechnology, vol. 26, no. 5, p. 485, 2008. View at Google Scholar
  135. R. N. Maini, P. C. Taylor, J. Szechinski et al., “Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate,” Arthritis & Rheumatism, vol. 54, no. 9, pp. 2817–2829, 2006. View at Publisher · View at Google Scholar · View at PubMed
  136. N. Nishimoto, J. Hashimoto, N. Miyasaka et al., “Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an X-ray reader-blinded randomised controlled trial of tocilizumab,” Annals of the Rheumatic Diseases, vol. 66, no. 9, pp. 1162–1167, 2007. View at Publisher · View at Google Scholar · View at PubMed
  137. J. S. Smolen, A. Beaulieu, A. Rubbert-Roth et al., “Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial,” The Lancet, vol. 371, no. 9617, pp. 987–997, 2008. View at Google Scholar
  138. M. C. Genovese, J. D. McKay, E. L. Nasonov et al., “Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study,” Arthritis & Rheumatism, vol. 58, no. 10, pp. 2968–2980, 2008. View at Publisher · View at Google Scholar · View at PubMed
  139. B. Baslund, N. Tvede, B. Danneskiold-Samsoe et al., “Targeting interleukin-15 in patients with rheumatoid arthritis: a proof-of-concept study,” Arthritis & Rheumatism, vol. 52, no. 9, pp. 2686–2692, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. V. Pascual, F. Allantaz, E. Arce, M. Punaro, and J. Banchereau, “Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade,” The Journal of Experimental Medicine, vol. 201, no. 9, pp. 1479–1486, 2005. View at Publisher · View at Google Scholar · View at PubMed
  141. S. Yokota, T. Imagawa, M. Mori et al., “Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial,” The Lancet, vol. 371, no. 9617, pp. 998–1006, 2008. View at Publisher · View at Google Scholar · View at PubMed
  142. B. Ostendorf, C. Iking-Konert, K. Kurz, G. Jung, O. Sander, and M. Schneider, “Preliminary results of safety and efficacy of the interleukin 1 receptor antagonist anakinra in patients with severe lupus arthritis,” Annals of the Rheumatic Diseases, vol. 64, no. 4, pp. 630–633, 2005. View at Publisher · View at Google Scholar · View at PubMed
  143. K. Reich, F. O. Nestle, K. Papp et al., “Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial,” The Lancet, vol. 366, no. 9494, pp. 1367–1374, 2005. View at Publisher · View at Google Scholar · View at PubMed
  144. S. Tyring, A. Gottlieb, K. Papp et al., “Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial,” The Lancet, vol. 367, no. 9504, pp. 29–35, 2006. View at Publisher · View at Google Scholar · View at PubMed
  145. J. H. Saurat, G. Stingl, L. Dubertret et al., “Efficacy and safety results from the randomized controlled comparative study of adalimumab vs. methotrexate vs. placebo in patients with psoriasis (CHAMPION),” The British Journal of Dermatology, vol. 158, no. 3, pp. 558–566, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  146. B. L. Bartlett and S. K. Tyring, “Ustekinumab for chronic plaque psoriasis,” The Lancet, vol. 371, no. 9625, pp. 1639–1640, 2008. View at Publisher · View at Google Scholar · View at PubMed
  147. C. L. Leonardi, A. B. Kimball, K. A. Papp et al., “Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1),” The Lancet, vol. 371, no. 9625, pp. 1665–1674, 2008. View at Google Scholar
  148. K. A. Papp, R. G. Langley, M. Lebwohl et al., “Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2),” The Lancet, vol. 371, no. 9625, pp. 1675–1684, 2008. View at Google Scholar
  149. P. J. Mease, B. S. Goffe, J. Metz, A. Vanderstoep, B. Finck, and D. J. Burge, “Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial,” The Lancet, vol. 356, no. 9227, pp. 385–390, 2000. View at Google Scholar
  150. P. J. Mease, D. D. Gladman, C. T. Ritchlin et al., “Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial,” Arthritis & Rheumatism, vol. 52, no. 10, pp. 3279–3289, 2005. View at Publisher · View at Google Scholar · View at PubMed
  151. D. H. Miller, O. A. Khan, W. A. Sheremata et al., “A controlled trial of natalizumab for relapsing multiple sclerosis,” The New England Journal of Medicine, vol. 348, no. 1, pp. 15–23, 2003. View at Publisher · View at Google Scholar · View at PubMed
  152. R. O. Williams, L. J. Mason, M. Feldmann, and R. N. Maini, “Synergy between anti-CD4 and anti-tumor necrosis factor in the amelioration of established collagen-induced arthritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 7, pp. 2762–2766, 1994. View at Google Scholar
  153. H. P. Carroll, V. Paunovic, and M. Gadina, “Signalling, inflammation and arthritis: crossed signals: the role of interleukin-15 and -18 in autoimmunity,” Rheumatology, vol. 47, no. 9, pp. 1269–1277, 2008. View at Publisher · View at Google Scholar · View at PubMed
  154. W. Rastetter, A. Molina, and C. A. White, “Rituximab: expanding role in therapy for lymphomas and autoimmune diseases,” Annual Review of Medicine, vol. 55, pp. 477–503, 2004. View at Publisher · View at Google Scholar · View at PubMed
  155. J. C. Edwards and G. Cambridge, “B-cell targeting in rheumatoid arthritis and other autoimmune diseases,” Nature Reviews in Immunology, vol. 6, no. 5, pp. 394–403, 2006. View at Publisher · View at Google Scholar · View at PubMed
  156. A. B. Gottlieb, “Psoriasis: emerging therapeutic strategies,” Nature Reviews Drug Discovery, vol. 4, no. 1, pp. 19–34, 2005. View at Publisher · View at Google Scholar · View at PubMed
  157. S. J. Khoury, W. W. Hancock, and H. L. Weiner, “Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor β, interleukin 4, and prostaglandin E expression in the brain,” The Journal of Experimental Medicine, vol. 176, no. 5, pp. 1355–1364, 1992. View at Publisher · View at Google Scholar
  158. D. L. Kaufman, M. Clare-Salzler, J. Tian et al., “Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes,” Nature, vol. 366, no. 6450, pp. 69–72, 1993. View at Publisher · View at Google Scholar · View at PubMed
  159. L. Chaillous, H. Lefèvre, and C. Thivolet, “Oral insulin administration and residual β-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial,” The Lancet, vol. 356, no. 9229, pp. 545–549, 2000. View at Google Scholar