Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2010, Article ID 170153, 9 pages
http://dx.doi.org/10.1155/2010/170153
Research Article

Human Lipoxygenase Pathway Gene Variation and Association with Markers of Subclinical Atherosclerosis in the Diabetes Heart Study

1Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
2Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
3Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
4Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
5Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
6Division of Radiological Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
7Division of Inflammation Biology, La Jolla Institute of Allergy & Immunology, La Jolla, CA 92037, USA
8Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia, P.O. Box 800717, Charlottesville, VA 22908-0717, USA

Received 16 October 2009; Revised 19 January 2010; Accepted 9 March 2010

Academic Editor: Oreste Gualillo

Copyright © 2010 Kathryn P. Burdon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Steinberg, “Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime,” Nature Medicine, vol. 8, no. 11, pp. 1211–1217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Mehrabian, H. Allayee, J. Wong et al., “Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice,” Circulation Research, vol. 91, no. 2, pp. 120–126, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. Dwyer, H. Allayee, K. M. Dwyer et al., “Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis,” The New England Journal of Medicine, vol. 350, no. 1, pp. 29–37, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Lotzer, C. D. Funk, and A. J. R. Habenicht, “The 5-lipoxygenase pathway in arterial wall biology and atherosclerosis,” Biochimica et Biophysica Acta, vol. 1736, no. 1, pp. 30–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Hakonarson, S. Thorvaldsson, A. Helgadottir et al., “Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial,” Journal of the American Medical Association, vol. 293, no. 18, pp. 2245–2256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Helgadottir, S. Gretarsdottir, D. St. Clair et al., “Association between the gene encoding 5-lipoxygenase-activating protein and stroke replicated in a Scottish population,” American Journal of Human Genetics, vol. 76, no. 3, pp. 505–509, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Helgadottir, A. Manolescu, G. Thorleifsson et al., “The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke,” Nature Genetics, vol. 36, no. 3, pp. 233–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. George, A. Afek, A. Shaish et al., “12/15-lipoxygenase gene disruption attenuates atherogenesis in LDL receptor-deficient mice,” Circulation, vol. 104, no. 14, pp. 1646–1650, 2001. View at Google Scholar · View at Scopus
  9. D. Steinberg, S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum, “Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity,” The New England Journal of Medicine, vol. 320, no. 14, pp. 915–924, 1989. View at Google Scholar · View at Scopus
  10. S. Yamamoto, “Mammalian lipoxygenases: molecular structures and functions,” Biochimica et Biophysica Acta, vol. 1128, no. 2-3, pp. 117–131, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Cyrus, J. L. Witztum, D. J. Rader et al., “Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice,” Journal of Clinical Investigation, vol. 103, no. 11, pp. 1597–1604, 1999. View at Google Scholar · View at Scopus
  12. D. Harats, A. Shaish, J. George et al., “Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 9, pp. 2100–2105, 2000. View at Google Scholar · View at Scopus
  13. S. Yla-Herttuala, M. E. Rosenfeld, S. Parthasarathy et al., “Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 18, pp. 6959–6963, 1990. View at Google Scholar · View at Scopus
  14. L. A. Lange, D. W. Bowden, C. D. Langefeld et al., “Heritability of carotid artery intima-medial thickness in type 2 diabetes,” Stroke, vol. 33, no. 7, pp. 1876–1881, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. L. E. Wagenknecht, D. W. Bowden, J. J. Carr, C. D. Langefeld, B. I. Freedman, and S. S. Rich, “Familial aggregation of coronary artery calcium in families with type 2 diabetes,” Diabetes, vol. 50, no. 4, pp. 861–866, 2001. View at Google Scholar · View at Scopus
  16. L. E. Wagenknecht, C. D. Langefeld, J. J. Carr et al., “Race-specific relationships between coronary and carotid artery calcification and carotid intimal medial thickness,” Stroke, vol. 35, no. 5, pp. e97–99, 2004. View at Google Scholar
  17. J. J. Carr, J. C. Nelson, N. D. Wong et al., “Calcified coronary artery plaque measurement with cardiac CT in population-based studies: standardized protocol of Multi-Ethnic Study of Atherosclerosis (MESA) and Coronary Artery Risk Development in Young Adults (CARDIA) study,” Radiology, vol. 234, no. 1, pp. 35–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. L. Zeger and K. Y. Liang, “Longitudinal data analysis for discrete and continuous outcomes,” Biometrics, vol. 42, no. 1, pp. 121–130, 1986. View at Google Scholar · View at Scopus
  19. F. Dudbridge, “Pedigree disequilibrium tests for multilocus haplotypes,” Genetic Epidemiology, vol. 25, no. 2, pp. 115–121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. C. D. Funk, “Prostaglandins and leukotrienes: advances in eicosanoid biology,” Science, vol. 294, no. 5548, pp. 1871–1875, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Rådmark, “Arachidonate 5-lipoxygenase,” Prostaglandins and Other Lipid Mediators, vol. 68-69, pp. 211–234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. M. E. Hatley, S. Srinivasan, K. B. Reilly, D. T. Bolick, and C. C. Hedrick, “Increased production of 12/15 lipoxygenase eicosanoids accelerates monocyte/endothelial interactions in diabetic db/db mice,” Journal of Biological Chemistry, vol. 278, no. 28, pp. 25369–25375, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. K. B. Reilly, S. Srinivasan, M. E. Hatley et al., “12/15-lipoxygenase activity mediates inflammatory monocyte/endothelial interactions and atherosclerosis in vivo,” Journal of Biological Chemistry, vol. 279, no. 10, pp. 9440–9450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J.-H. Qiao, J. Tripathi, N. K. Mishra et al., “Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice,” American Journal of Pathology, vol. 150, no. 5, pp. 1687–1699, 1997. View at Google Scholar · View at Scopus
  26. R. Spanbroek, R. Grabner, K. Lotzer et al., “Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 1238–1243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. C. N. Serhan, A. Jain, S. Marleau et al., “Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators,” Journal of Immunology, vol. 171, no. 12, pp. 6856–6865, 2003. View at Google Scholar · View at Scopus
  28. J. Shen, E. Herderick, J. F. Cornhill et al., “Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development,” Journal of Clinical Investigation, vol. 98, no. 10, pp. 2201–2208, 1996. View at Google Scholar · View at Scopus
  29. N. Chiang, M. Arita, and C. N. Serhan, “Anti-inflammatory circuitry: lipoxin, aspirin-triggered lipoxins and their receptor ALX,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 73, no. 3-4, pp. 163–177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. I. M. Fierro and C. N. Serhan, “Mechanisms in anti-inflammation and resolution: the role of lipoxins and aspirin-triggered lipoxins,” Brazilian Journal of Medical and Biological Research, vol. 34, no. 5, pp. 555–566, 2001. View at Google Scholar · View at Scopus
  31. C. N. Serhan, “Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 73, no. 3-4, pp. 141–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Gaeta, M. De Michele, S. Cuomo et al., “Arterial abnormalities in the offspring of patients with premature myocardial infarction,” The New England Journal of Medicine, vol. 343, no. 12, pp. 840–846, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. P. N. Hopkins and R. R. Williams, “Human genetics and coronary heart disease: a public health perspective,” Annual Review of Nutrition, vol. 9, no. 1, pp. 303–345, 1989. View at Google Scholar
  34. R. Duggirala, C. Gonzalez, D. H. O'Leary, M. P. Stern, and J. Blangero, “Genetic basis of variation in carotid artery wall thickness,” Stroke, vol. 27, no. 5, pp. 833–837, 1996. View at Google Scholar · View at Scopus
  35. A. H. Xiang, S. P. Azen, T. A. Buchanan et al., “Heritability of subclinical atherosclerosis in Latino families ascertained through a hypertensive parent,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 5, pp. 843–848, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. L. A. Lange, E. M. Lange, L. F. Bielak et al., “Autosomal genome-wide scan for coronary artery calcification loci in sibships at high risk for hypertension,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 3, pp. 418–423, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. K. J. Hunt, R. Duggirala, H. H. H. Goring et al., “Genetic basis of variation in carotid artery plaque in the San Antonio Family Heart Study,” Stroke, vol. 33, no. 12, pp. 2775–2780, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Moskau, A. Golla, C. Grothe, M. Boes, C. Pohl, and T. Klockgether, “Heritability of carotid artery atherosclerotic lesions: an ultrasound study in 154 families,” Stroke, vol. 36, no. 1, pp. 5–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. C. J. O'Donnell, I. Chazaro, P. W. F. Wilson et al., “Evidence for heritability of abdominal aortic calcific deposits in the Framingham Heart Study,” Circulation, vol. 106, no. 3, pp. 337–341, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Cyrus, D. Praticò, L. Zhao et al., “Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice,” Circulation, vol. 103, no. 18, pp. 2277–2282, 2001. View at Google Scholar · View at Scopus
  41. L. Zhao, C. A. Cuff, E. Moss et al., “Selective interleukin-12 synthesis defect in 12/15-lipoxygenase-deficient macrophages associated with reduced atherosclerosis in a mouse model of familial hypercholesterolemia,” Journal of Biological Chemistry, vol. 277, no. 38, pp. 35350–35356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Mehrabian, J. Wong, X. Wang et al., “Genetic locus in mice that blocks development of atherosclerosis despite extreme hyperlipidemia,” Circulation Research, vol. 89, no. 2, pp. 125–130, 2001. View at Google Scholar · View at Scopus
  43. C. L. Welch, S. Bretschger, N. Latib et al., “Localization of atherosclerosis susceptibility loci to chromosomes 4 and 6 using the Ldlr knockout mouse model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 14, pp. 7946–7951, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Bäck, D.-X. Bu, R. Bränström, Y. Sheikine, Z.-Q. Yan, and G. K. Hansson, “Leukotriene B4 signaling through NF-κB-dependent BLT 1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17501–17506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Helgadottir, A. Manolescu, A. Helgason et al., “A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction,” Nature Genetics, vol. 38, no. 1, pp. 68–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. C. J. O'Donnell, M. K. Shea, P. A. Price et al., “Matrix Gla protein is associated with risk factors for atherosclerosis but not with coronary artery calcification,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 12, pp. 2769–2774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Ghazalpour, S. Doss, X. Yang et al., “Thematic review series: the pathogenesis of atherosclerosis. Toward a biological network for atherosclerosis,” Journal of Lipid Research, vol. 45, no. 10, pp. 1793–1805, 2004. View at Publisher · View at Google Scholar · View at Scopus