Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012 (2012), Article ID 146154, 12 pages
http://dx.doi.org/10.1155/2012/146154
Review Article

Inflammation in Diabetic Nephropathy

1Department of Nephrology, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
2Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia

Received 24 May 2012; Accepted 5 July 2012

Academic Editor: Oreste Gualillo

Copyright © 2012 Andy K. H. Lim and Gregory H. Tesch. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Galkina and K. Ley, “Leukocyte recruitment and vascular injury in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 17, no. 2, pp. 368–377, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Chow, E. Ozols, D. J. Nikolic-Paterson, R. C. Atkins, and G. H. Tesch, “Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury,” Kidney International, vol. 65, no. 1, pp. 116–128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Y. Chow, D. J. Nikolic-Paterson, R. C. Atkins, and G. H. Tesch, “Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis,” Nephrology Dialysis Transplantation, vol. 19, no. 12, pp. 2987–2996, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Furuta, T. Saito, T. Ootaka et al., “The role of macrophages in diabetic glomerulosclerosis,” American Journal of Kidney Diseases, vol. 21, no. 5, pp. 480–485, 1993. View at Google Scholar · View at Scopus
  5. D. Nguyen, F. Ping, W. Mu, P. Hill, R. C. Atkins, and S. J. Chadban, “Macrophage accumulation in human progressive diabetic nephropathy,” Nephrology, vol. 11, no. 3, pp. 226–231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Y. Chow, D. J. Nikolic-Paterson, E. Ozols, R. C. Atkins, and G. H. Tesch, “Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice,” Journal of the American Society of Nephrology, vol. 16, no. 6, pp. 1711–1722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Morii, H. Fujita, T. Narita et al., “Association of monocyte chemoattractant protein-1 with renal tubular damage in diabetic nephropathy,” Journal of Diabetes and its Complications, vol. 17, no. 1, pp. 11–15, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Kanamori, T. Matsubara, A. Mima et al., “Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy,” Biochemical and Biophysical Research Communications, vol. 360, no. 4, pp. 772–777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Y. Chow, D. J. Nikolic-Paterson, F. Y. Ma, E. Ozols, B. J. Rollins, and G. H. Tesch, “Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice,” Diabetologia, vol. 50, no. 2, pp. 471–480, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Y. Chow, D. J. Nikolic-Paterson, E. Ozols, R. C. Atkins, B. J. Rollin, and G. H. Tesch, “Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice,” Kidney International, vol. 69, no. 1, pp. 73–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. K. H. Lim, F. Y. Ma, D. J. Nikolic-Paterson, M. C. Thomas, L. A. Hurst, and G. H. Tesch, “Antibody blockade of c-fms suppresses the progression of inflammation and injury in early diabetic nephropathy in obese db/db mice,” Diabetologia, vol. 52, no. 8, pp. 1669–1679, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. P. G. Tipping and S. R. Holdsworth, “T cells in crescentic glomerulonephritis,” Journal of the American Society of Nephrology, vol. 17, no. 5, pp. 1253–1263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Xiao, B. Ma, B. Dong et al., “Cellular and humoral immune responses in the early stages of diabetic nephropathy in NOD mice,” Journal of Autoimmunity, vol. 32, no. 2, pp. 85–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Moriya, J. C. Manivel, and M. Mauer, “Juxtaglomerular apparatus T-cell infiltration affects glomerular structure in Type 1 diabetic patients,” Diabetologia, vol. 47, no. 1, pp. 82–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Odobasic, A. R. Kitching, T. J. Semple, J. R. Timoshanko, P. G. Tipping, and S. R. Holdsworth, “Glomerular expression of CD80 and CD86 is required for leukocyte accumulation and injury in crescentic glomerulonephritis,” Journal of the American Society of Nephrology, vol. 16, no. 7, pp. 2012–2022, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Imani, Y. Horii, M. Suthanthiran et al., “Advanced glycosylation endproduct-specific receptors on human and rat T- lymphocytes mediate synthesis of interferon γ: role in tissue remodeling,” Journal of Experimental Medicine, vol. 178, no. 6, pp. 2165–2172, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. V. S. LeBleu, H. Sugimoto, C. A. Miller, V. H. Gattone, and R. Kalluri, “Lymphocytes are dispensable for glomerulonephritis but required for renal interstitial fibrosis in matrix defect-induced Alport renal disease,” Laboratory Investigation, vol. 88, no. 3, pp. 284–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. G. R. Kinsey, R. Sharma, L. Huang et al., “Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury,” Journal of the American Society of Nephrology, vol. 20, no. 8, pp. 1744–1753, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. K. H. Lim, F. Y. Ma, D. J. Nikolic-Paterson, A. R. Kitching, M. C. Thomas, and G. H. Tesch, “Lymphocytes promote albuminuria, but not renal dysfunction or histological damage in a mouse model of diabetic renal injury,” Diabetologia, vol. 53, no. 8, pp. 1772–1782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Zhen, L. Sun, H. Liu et al., “Alterations of peripheral CD4 + CD25 + Foxp3 + T regulatory cells in mice with STZ-induced diabetes,” Cellular and Molecular Immunology, vol. 9, no. 1, pp. 75–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Eller, A. Kirsch, A. M. Wolf et al., “Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy,” Diabetes, vol. 60, no. 11, pp. 2954–2962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Mironova, G. Virella, and M. F. Lopes-Virella, “Isolation and characterization of human antioxidized LDL autoantibodies,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 2, pp. 222–229, 1996. View at Google Scholar · View at Scopus
  23. M. F. Lopes-Virella and G. Virella, “The role of immune and inflammatory processes in the development of macrovascular disease in diabetes,” Frontiers in Bioscience, vol. 8, pp. s750–s768, 2003. View at Google Scholar · View at Scopus
  24. D. Atchley, M. Lopes-Virella, D. Zheng, D. Kenny, and G. Virella, “Oxidized LDL-anti-oxidized LDL immune complexes and diabetic nephropathy,” Diabetologia, vol. 45, no. 11, pp. 1562–1571, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Virella, R. E. Carter, A. Saad, E. G. Crosswell, B. A. Game, and M. F. Lopes-Virella, “Distribution of IgM and IgG antibodies to oxidized LDL in immune complexes isolated from patients with type 1 diabetes and its relationship with nephropathy,” Clinical Immunology, vol. 127, no. 3, pp. 394–400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Hora, J. A. Satriano, A. Santiago et al., “Receptors for IgG complexes activate synthesis of monocyte chemoattractant peptide 1 and colony-stimulating factor 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 5, pp. 1745–1749, 1992. View at Google Scholar · View at Scopus
  27. S. A. Abdelsamie, Y. Li, Y. Huang et al., “Oxidized LDL immune complexes stimulate collagen IV production in mesangial cells via Fc gamma receptors I and III,” Clinical Immunology, vol. 139, no. 3, pp. 258–266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. F. Saad, G. Virella, C. Chassereau, R. J. Boackle, and M. F. Lopes-Virella, “OxLDL immune complexes activate complement and induce cytokine production by MonoMac 6 cells and human macrophages,” Journal of Lipid Research, vol. 47, no. 9, pp. 1975–1983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. C. K. Abrass, “Evaluation of the presence of circulating immune complexes and their relationship to glomerular IgG deposits in streptozotocin-induced diabetic rats,” Clinical and Experimental Immunology, vol. 57, no. 1, pp. 17–24, 1984. View at Google Scholar · View at Scopus
  30. S. K. Ainsworth, H. Z. Hirsch, and N. C. Brackett, “Diabetic glomerulonephropathy: histopathologic, immunofluorescent, and ultrastructural studies of 16 cases,” Human Pathology, vol. 13, no. 5, pp. 470–478, 1982. View at Google Scholar · View at Scopus
  31. D. G. Haider, S. Peric, A. Friedl et al., “Kidney biopsy in patients with diabetes mellitus,” Clinical Nephrology, vol. 76, no. 3, pp. 180–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. F. C. Brosius, C. E. Alpers, E. P. Bottinger et al., “Mouse models of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 20, no. 12, pp. 2503–2512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. C.-C. Wu, H.-K. Sytwu, and Y.-F. Lin, “Cytokines in diabetic nephropathy,” Advances in Clinical Chemistry, vol. 56, pp. 55–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Chiarelli, S. Gaspari, and M. L. Marcovecchio, “Role of growth factors in diabetic kidney disease,” Hormone and Metabolic Research, vol. 41, no. 8, pp. 585–593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. A. M. Jevnikar, D. C. Brennan, G. G. Singer et al., “Stimulated kidney tubular epithelial cells express membrane associated and secreted TNFα,” Kidney International, vol. 40, no. 2, pp. 203–211, 1991. View at Google Scholar · View at Scopus
  36. T. Nakamura, M. Fukui, I. Ebihara et al., “mRNA expression of growth factors in glomeruli from diabetic rats,” Diabetes, vol. 42, no. 3, pp. 450–456, 1993. View at Google Scholar · View at Scopus
  37. H. Sugimoto, K. Shikata, J. Wada, S. Horiuchi, and H. Makino, “Advanced glycation end products-cytokine-nitric oxide sequence pathway in the development of diabetic nephropathy: aminoguanidine ameliorates the overexpression of tumour necrosis factor-α and inducible nitric oxide synthase in diabetic rat glomeruli,” Diabetologia, vol. 42, no. 7, pp. 878–886, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Dong, S. Swaminathan, L. A. Bachman, A. J. Croatt, K. A. Nath, and M. D. Griffin, “Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury,” Kidney International, vol. 71, no. 7, pp. 619–628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. E. P. K. Mensah-Brown, E. N. Obineche, S. Galadari et al., “Streptozotocin-induced diabetic nephropathy in rats: the role of inflammatory cytokines,” Cytokine, vol. 31, no. 3, pp. 180–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. H. H. Radeke, B. Meier, N. Topley, J. Floge, G. G. Habermehl, and K. Resch, “Interleukin 1-α and tumor necrosis factor-α induce oxygen radical production in mesangial cells,” Kidney International, vol. 37, no. 2, pp. 767–775, 1990. View at Google Scholar · View at Scopus
  41. N. Koike, T. Takamura, and S. Kaneko, “Induction of reactive oxygen species from isolated rat glomeruli by protein kinase C activation and TNF-α stimulation, and effects of a phosphodiesterase inhibitor,” Life Sciences, vol. 80, no. 18, pp. 1721–1728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. E. T. Mccarthy, R. Sharma, M. Sharma et al., “TNF-α increases albumin permeability of isolated rat glomeruli through the generation of superoxide,” Journal of the American Society of Nephrology, vol. 9, no. 3, pp. 433–438, 1998. View at Google Scholar · View at Scopus
  43. S. M. Laster, J. G. Wood, and L. R. Gooding, “Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis,” Journal of Immunology, vol. 141, no. 8, pp. 2629–2634, 1988. View at Google Scholar · View at Scopus
  44. J. J. Boyle, P. L. Weissberg, and M. R. Bennett, “Tumor necrosis factor-α promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 9, pp. 1553–1558, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Baud and R. Ardaillou, “Tumor necrosis factor in renal injury,” Mineral and Electrolyte Metabolism, vol. 21, no. 4-5, pp. 336–341, 1995. View at Google Scholar · View at Scopus
  46. M. Gomez-Chiarri, A. Ortiz, J. L. Lerma et al., “Involvement of tumor necrosis factor and platelet-activating factor in the pathogenesis of experimental nephrosis in rats,” Laboratory Investigation, vol. 70, no. 4, pp. 449–459, 1994. View at Google Scholar · View at Scopus
  47. P. A. Marsden and B. M. Brenner, “Transcriptional regulation of the endothelin-1 gene by TNF-α,” American Journal of Physiology, Cell Physiology, vol. 262, no. 4, pp. C854–C861, 1992. View at Google Scholar · View at Scopus
  48. P. A. Marsden and B. J. Ballermann, “Tumor necrosis factor α activates soluble guanylate cyclase in bovine glomerular mesangial cells via an L-arginine-dependent mechanism,” Journal of Experimental Medicine, vol. 172, no. 6, pp. 1843–1852, 1990. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Wójciak-Stothard, A. Entwistle, R. Garg, and A. J. Ridley, “Regulation of TNF-α-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells,” Journal of Cellular Physiology, vol. 176, no. 1, pp. 150–165, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Moriwaki, T. Yamamoto, Y. Shibutani et al., “Elevated levels of interleukin-18 and tumor necrosis factor-α in serum of patients with type 2 diabetes mellitus: relationship with diabetic nephropathy,” Metabolism: Clinical and Experimental, vol. 52, no. 5, pp. 605–608, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. J. F. Navarro, C. Mora, M. Macía, and J. García, “Inflammatory parameters are independently associated with urinary albumin in type 2 diabetes mellitus,” American Journal of Kidney Diseases, vol. 42, no. 1, pp. 53–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. J. F. Navarro, C. Mora, M. Muros, and J. García, “Urinary tumour necrosis factor-α excretion independently correlates with clinical markers of glomerular and tubulointerstitial injury in type 2 diabetic patients,” Nephrology Dialysis Transplantation, vol. 21, no. 12, pp. 3428–3434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Gu, S. C. Tseng, and B. J. Rollins, “Monocyte chemoattractant protein-1,” Chemical Immunology, vol. 72, pp. 7–29, 1999. View at Google Scholar · View at Scopus
  54. C. Viedt and S. R. Orth, “Monocyte chemoattractant protein-1 (MCP-1) in the kidney: does it more than simply attract monocytes?” Nephrology Dialysis Transplantation, vol. 17, no. 12, pp. 2043–2047, 2002. View at Google Scholar · View at Scopus
  55. S. Kato, V. A. Luyckx, M. Ots et al., “Renin-angiotensin blockade lowers MCP-1 expression in diabetic rats,” Kidney International, vol. 56, no. 3, pp. 1037–1048, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Gruden, G. Setti, A. Hayward et al., “Mechanical stretch induces monocyte chemoattractant activity via an NF-κB-dependent monocyte chemoattractant protein-1-mediated pathway in human mesangial cells: inhibition by rosiglitazone,” Journal of the American Society of Nephrology, vol. 16, no. 3, pp. 688–696, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Amann, R. Tinzmann, and B. Angelkort, “ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1,” Diabetes Care, vol. 26, no. 8, pp. 2421–2425, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Y. Han, C. H. Kim, H. S. Kim et al., “Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats,” Journal of the American Society of Nephrology, vol. 17, no. 5, pp. 1362–1372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Sugimoto, K. Shikata, K. Hirata et al., “Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation,” Diabetes, vol. 46, no. 12, pp. 2075–2081, 1997. View at Google Scholar · View at Scopus
  60. H. Matsui, M. Suzuki, R. Tsukuda, K. Iida, M. Miyasaka, and H. Ikeda, “Expression of ICAM-1 on glomeruli is associated with progression of diabetic nephropathy in a genetically obese diabetic rat, Wistar fatty,” Diabetes Research and Clinical Practice, vol. 32, no. 1-2, pp. 1–9, 1996. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Okada, K. Shikata, M. Matsuda et al., “Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes,” Diabetes, vol. 52, no. 10, pp. 2586–2593, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Güler, B. Cakir, B. Demirbas et al., “Plasma soluble intercellular adhesion molecule 1 levels are increased in type 2 diabetic patients with nephropathy,” Hormone Research, vol. 58, no. 2, pp. 67–70, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Seron, J. S. Cameron, and D. O. Haskard, “Expression of VCAM-1 in the normal and diseased kidney,” Nephrology Dialysis Transplantation, vol. 6, no. 12, pp. 917–922, 1991. View at Google Scholar · View at Scopus
  64. K. Ina, H. Kitamura, T. Okeda et al., “Vascular cell adhesion molecule-1 expression in the renal interstitium of diabetic KKAy mice,” Diabetes Research and Clinical Practice, vol. 44, no. 1, pp. 1–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. F. Wang, M. Li, L. Cheng et al., “Intervention with cilostazol attenuates renal inflammation in streptozotocin-induced diabetic rats,” Life Sciences, vol. 83, no. 25-26, pp. 828–835, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Clausen, P. Jacobsen, K. Rossing, J. S. Jensen, H. H. Parving, and B. Feldt-Rasmussen, “Plasma concentrations of VCAM-1 and ICAM-1 are elevated in patients with Type 1 diabetes mellitus with microalbuminuria and overt nephropathy,” Diabetic Medicine, vol. 17, no. 9, pp. 644–649, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. A. F. Rubio-Guerra, H. Vargas-Robles, J. J. Lozano Nuevo, and B. A. Escalante-Acosta, “Correlation between circulating adhesion molecule levels and albuminuria in type-2 diabetic hypertensive patients,” Kidney and Blood Pressure Research, vol. 32, no. 2, pp. 106–109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. J. F. Navarro, F. J. Milena, C. Mora, C. León, and J. García, “Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration,” American Journal of Nephrology, vol. 26, no. 6, pp. 562–570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Sassy-Prigent, D. Heudes, C. Mandet et al., “Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats,” Diabetes, vol. 49, no. 3, pp. 466–475, 2000. View at Google Scholar · View at Scopus
  70. H. R. Brady, “Leukocyte adhesion molecules and kidney diseases,” Kidney International, vol. 45, no. 5, pp. 1285–1300, 1994. View at Google Scholar · View at Scopus
  71. C. W. Park, J. H. Kim, J. W. Lee et al., “High glucose-induced intercellular adhesion molecule-1 (ICAM-1) expression through an osmotic effect in rat mesangial cells is PKC-NF-κB-dependent,” Diabetologia, vol. 43, no. 12, pp. 1544–1553, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Pfeilschifter, W. Pignat, K. Vosbeck, and F. Marki, “Interleukin 1 and tumor necrosis factor synergistically stimulate prostaglandin synthesis and phospholipase A2 release from rat renal mesangial cells,” Biochemical and Biophysical Research Communications, vol. 159, no. 2, pp. 385–394, 1989. View at Google Scholar · View at Scopus
  73. J. A. Royall, R. L. Berkow, J. S. Beckman, M. K. Cunningham, S. Matalon, and B. A. Freeman, “Tumor necrosis factor and interleukin 1α increase vascular endothelial permeability,” American Journal of Physiology, Lung Cellular and Molecular Physiology, vol. 257, no. 6, pp. L399–L410, 1989. View at Google Scholar · View at Scopus
  74. D. A. Vesey, C. Cheung, L. Cuttle, Z. Endre, G. Gobe, and D. W. Johnson, “Interleukin-1 β stimulates human renal fibroblast proliferation and matrix protein production by means of a transforming growth factor-β-dependent mechanism,” Journal of Laboratory and Clinical Medicine, vol. 140, no. 5, pp. 342–350, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. S. H. Lee, C. G. Ihm, S. D. Sohn et al., “Polymorphisms in interleukin-1β and interleukin-1 receptor antagonist genes are associated with kidney failure in Korean patients with type 2 diabetes mellitus,” American Journal of Nephrology, vol. 24, no. 4, pp. 410–414, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. L. Tarnow, F. Pociot, P. M. Hansen et al., “Polymorphisms in the interleukin-1 gene cluster do not contribute to the genetic susceptibility of diabetic nephropathy in Caucasian patients with IDDM,” Diabetes, vol. 46, no. 6, pp. 1075–1076, 1997. View at Google Scholar · View at Scopus
  77. S. C. Thomson, A. Deng, D. Bao, J. Satriano, R. C. Blantz, and V. Vallon, “Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes,” Journal of Clinical Investigation, vol. 107, no. 2, pp. 217–224, 2001. View at Google Scholar · View at Scopus
  78. D. L. Coleman and C. Ruef, “Interleukin-6: an autocrine regulator of mesangial cell growth,” Kidney International, vol. 41, no. 3, pp. 604–606, 1992. View at Google Scholar · View at Scopus
  79. D. Suzuki, M. Miyazaki, R. Naka et al., “In situ hybridization of interleukin 6 in diabetic nephropathy,” Diabetes, vol. 44, no. 10, pp. 1233–1238, 1995. View at Google Scholar · View at Scopus
  80. T. Hirano, S. Akira, T. Taga, and T. Kishimoto, “Biological and clinical aspects of interleukin 6,” Immunology Today, vol. 11, no. 12, pp. 443–449, 1990. View at Google Scholar · View at Scopus
  81. C. Ruef, K. Budde, J. Lacy et al., “Interleukin 6 is an autocrine growth factor for mesangial cells,” Kidney International, vol. 38, no. 2, pp. 249–257, 1990. View at Google Scholar · View at Scopus
  82. Y. Aso, N. Yoshida, K. I. Okumura et al., “Coagulation and inflammation in overt diabetic nephropathy: association with hyperhomocysteinemia,” Clinica Chimica Acta, vol. 348, no. 1-2, pp. 139–145, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Saraheimo, A. M. Teppo, C. Forsblom, J. Fagerudd, and P. H. Groop, “Diabetic nephropathy is associated with low-grade inflammation in Type 1 diabetic patients,” Diabetologia, vol. 46, no. 10, pp. 1402–1407, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Dalla Vestra, M. Mussap, P. Gallina et al., “Acute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes,” Journal of the American Society of Nephrology, vol. 16, supplement 1, no. 3, pp. S78–S82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Okamura, H. Tsutsui, T. Komatsu et al., “Cloning of a new cytokine that induces IFN-γ production by T cells,” Nature, vol. 378, no. 6552, pp. 88–91, 1995. View at Publisher · View at Google Scholar · View at Scopus
  86. S. M. Dai, H. Matsuno, H. Nakamura, K. Nishioka, and K. Yudoh, “Interleukin-18 enhances monocyte tumor necrosis factor α and interleukin-1β production induced by direct contact with T lymphocytes: implications in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 50, no. 2, pp. 432–443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Mariño and J. E. Cardier, “Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-α and Fas (CD95),” Cytokine, vol. 22, no. 5, pp. 142–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. R. J. L. Stuyt, M. G. Netea, T. B. H. Geijtenbeek, B. J. Kullberg, C. A. Dinarello, and J. W. M. Van Der Meer, “Selective regulation of intercellular adhesion molecule-1 expression by interleukin-18 and interleukin-12 on human monocytes,” Immunology, vol. 110, no. 3, pp. 329–334, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. V. Y. Melnikov, T. Ecder, G. Fantuzzi et al., “Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure,” Journal of Clinical Investigation, vol. 107, no. 9, pp. 1145–1152, 2001. View at Google Scholar · View at Scopus
  90. V. Y. Melnikov, S. Faubel, B. Siegmund, M. Scott Lucia, D. Ljubanovic, and C. L. Edelstein, “Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice,” Journal of Clinical Investigation, vol. 110, no. 8, pp. 1083–1091, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Nakamura, K. Shikata, M. Hiramatsu et al., “Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes,” Diabetes Care, vol. 28, no. 12, pp. 2890–2895, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Ouedraogo, Y. Gong, B. Berzins et al., “Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo,” Journal of Clinical Investigation, vol. 117, no. 6, pp. 1718–1726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Yokota, K. Oritani, I. Takahashi et al., “Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages,” Blood, vol. 96, no. 5, pp. 1723–1732, 2000. View at Google Scholar · View at Scopus
  94. N. Ouchi, S. Kihara, Y. Arita et al., “Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages,” Circulation, vol. 103, no. 8, pp. 1057–1063, 2001. View at Google Scholar · View at Scopus
  95. Y. Wang, K. S. L. Lam, J. Y. Xu et al., “Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner,” Journal of Biological Chemistry, vol. 280, no. 18, pp. 18341–18347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Tamura, T. Murayama, M. Minami, T. Matsubara, M. Yokode, and H. Arai, “Ezetimibe ameliorates early diabetic nephropathy in db/db mice,” Journal of Atherosclerosis and Thrombosis, vol. 19, no. 7, pp. 608–618, 2012. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Nakamaki, H. Satoh, A. Kudoh, Y. Hayashi, H. Hirai, and T. Watanabe, “Adiponectin reduces proteinuria in streptozotocin-induced diabetic wistar rats,” Experimental Biology and Medicine, vol. 236, no. 5, pp. 614–620, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. C. G. Schalkwijk, N. Chaturvedi, M. T. Schram, J. H. Fuller, and C. D. A. Stehouwer, “Adiponectin is inversely associated with renal function in type 1 diabetic patients,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 1, pp. 129–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Saraheimo, C. Forsblom, J. Fagerudd et al., “Serum adiponectin is increased in type 1 diabetic patients with nephropathy,” Diabetes Care, vol. 28, no. 6, pp. 1410–1414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. K. Kato, H. Osawa, M. Ochi et al., “Serum total and high molecular weight adiponectin levels are correlated with the severity of diabetic retinopathy and nephropathy,” Clinical Endocrinology, vol. 68, no. 3, pp. 442–449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Rivero, C. Mora, M. Muros, J. García, H. Herrera, and J. F. Navarro-González, “Pathogenic perspectives for the role of inflammation in diabetic nephropathy,” Clinical Science, vol. 116, no. 6, pp. 479–492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. K. O. Hanai, T. Babazono, M. Mugishima et al., “Association of serum leptin levels with progression of diabetic kidney disease in patients with type 2 diabetes,” Diabetes Care, vol. 34, no. 12, pp. 2557–2559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. B. Fruehwald-Schultes, W. Kern, J. Beyer, T. Forst, A. Pfützner, and A. Peters, “Elevated serum leptin concentrations in type 2 diabetic patients with microalbuminuria and macroalbuminuria,” Metabolism: Clinical and Experimental, vol. 48, no. 10, pp. 1290–1293, 1999. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Axelsson, A. Bergsten, A. R. Qureshi et al., “Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance,” Kidney International, vol. 69, no. 3, pp. 596–604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. F. Y. Ma, J. Liu, and D. J. Nikolic-Paterson, “The role of stress-activated protein kinase signaling in renal pathophysiology,” Brazilian Journal of Medical and Biological Research, vol. 42, no. 1, pp. 29–37, 2009. View at Google Scholar · View at Scopus
  106. L. Adhikary, F. Chow, D. J. Nikolic-Paterson et al., “Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy,” Diabetologia, vol. 47, no. 7, pp. 1210–1222, 2004. View at Google Scholar · View at Scopus
  107. N. Sakai, T. Wada, K. Furuichi et al., “Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy,” American Journal of Kidney Diseases, vol. 45, no. 1, pp. 54–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. C. Stambe, R. C. Atkins, G. H. Tesch et al., “Blockade of p38α MAPK ameliorates acute inflammatory renal injury in rat anti-GBM glomerulonephritis,” Journal of the American Society of Nephrology, vol. 14, no. 2, pp. 338–351, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. C. Stambe, R. C. Atkins, G. H. Tesch, T. Masaki, G. F. Schreiner, and D. J. Nikolic-Paterson, “The Role of p38α mitogen-activated protein kinase activation in renal fibrosis,” Journal of the American Society of Nephrology, vol. 15, no. 2, pp. 370–379, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. W. A. Wilmer, C. L. Dixon, and C. Hebert, “Chronic exposure of human mesangial cells to high glucose environments activates the p38 MAPK pathway,” Kidney International, vol. 60, no. 3, pp. 858–871, 2001. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Susztak, A. C. Raff, M. Schiffer, and E. P. Böttinger, “Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy,” Diabetes, vol. 55, no. 1, pp. 225–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. S. L. Zhang, S. S. Tang, X. Chen, J. G. Filep, J. R. Ingelfinger, and J. S. D. Chan, “High levels of glucose stimulate angiotensinogen gene expression via the p38 mitogen-activated protein kinase pathway in rat kidney proximal tubular cells,” Endocrinology, vol. 141, no. 12, pp. 4637–4646, 2000. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Daoud, R. Schinzel, A. Neumann et al., “Advanced glycation endproducts: activators of cardiac remodeling in primary fibroblasts from adult rat hearts,” Molecular Medicine, vol. 7, no. 8, pp. 543–551, 2001. View at Google Scholar · View at Scopus
  114. B. F. Liu, S. Miyata, Y. Hirota et al., “Methylglyoxal induces apoptosis through activation of p38 mitogen-activated protein kinase in rat mesangial cells,” Kidney International, vol. 63, no. 3, pp. 947–957, 2003. View at Publisher · View at Google Scholar · View at Scopus
  115. Y. S. Kang, Y. G. Park, B. K. Kim et al., “Angiotensin II stimulates the synthesis of vascular endothelial growth factor through the p38 mitogen activated protein kinase pathway in cultured mouse podocytes,” Journal of Molecular Endocrinology, vol. 36, no. 2, pp. 377–388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. P. Y. Chuang, Q. Yu, W. Fang, J. Uribarri, and J. C. He, “Advanced glycation endproducts induce podocyte apoptosis by activation of the FOXO4 transcription factor,” Kidney International, vol. 72, no. 8, pp. 965–976, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Porras, S. Zuluaga, E. Black et al., “p38α Mitogen-activated Protein Kinase Sensitizes Cells to Apoptosis Induced by Different Stimuli,” Molecular Biology of the Cell, vol. 15, no. 2, pp. 922–933, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. H. Takaishi, T. Taniguchi, A. Takahashi, Y. Ishikawa, and M. Yokoyama, “High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells,” Biochemical and Biophysical Research Communications, vol. 305, no. 1, pp. 122–128, 2003. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Suzuki, K. Uchida, K. Nitta, and H. Nihei, “Role of mitogen-activated protein kinase in the regulation of transforming growth factor-β-induced fibronectin accumulation in cultured renal interstitial fibroblasts,” Clinical and Experimental Nephrology, vol. 8, no. 3, pp. 188–195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. B. Y. Chin, A. Mohsenin, S. X. Li, A. M. K. Choi, and M. E. Choi, “Stimulation of pro-α1(I) collagen by TGF-β1 in mesangial cells: role of the p38 MAPK pathway,” American Journal of Physiology, vol. 280, no. 3, pp. F495–F504, 2001. View at Google Scholar · View at Scopus
  121. H. Fujita, S. Omori, K. Ishikura, M. Hida, and M. Awazu, “ERK and p38 mediate high-glucose-induced hypertrophy and TGF-β expression in renal tubular cells,” American Journal of Physiology, vol. 286, no. 1, pp. F120–F126, 2004. View at Google Scholar · View at Scopus
  122. D. T. Wu, M. Bitzer, W. Ju, P. Mundel, and E. P. Böttinger, “TGF-β concentration specifies differential signaling profiles of growth arrest/differentiation and apoptosis in podocytes,” Journal of the American Society of Nephrology, vol. 16, no. 11, pp. 3211–3221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Schiffer, M. Bitzer, I. S. D. Roberts et al., “Apoptosis in podocytes induced by TGF-β and Smad7,” Journal of Clinical Investigation, vol. 108, no. 6, pp. 807–816, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Zhuang, Y. Yan, J. Han, and R. G. Schnellmann, “p38 kinase-mediated transactivation of the epidermal growth factor receptor is required for dedifferentiation of renal epithelial cells after oxidant injury,” Journal of Biological Chemistry, vol. 280, no. 22, pp. 21036–21042, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. D. S. Jung, J. J. Li, S. J. Kwak et al., “FR167653 inhibits fibronectin expression and apoptosis in diabetic glomeruli and in high-glucose-stimulated mesangial cells,” American Journal of Physiology, vol. 295, no. 2, pp. F595–F604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. L. Wang, R. Ma, R. A. Flavell, and M. E. Choi, “Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for activation of p38α and p38δ MAPK isoforms by TGF-β1 in murine mesangial cells,” Journal of Biological Chemistry, vol. 277, no. 49, pp. 47257–47262, 2002. View at Publisher · View at Google Scholar · View at Scopus
  127. L. Wang, J. H. Kwak, S. I. Kim, Y. He, and M. E. Choi, “Transforming growth factor-β1 stimulates vascular endothelial growth factor 164 via mitogen-activated protein kinase kinase 3-p38α and p38δ mitogen-activated protein kinase-dependent pathway in murine mesangial cells,” Journal of Biological Chemistry, vol. 279, no. 32, pp. 33213–33219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. A. K. H. Lim, D. J. Nikolic-Paterson, F. Y. Ma et al., “Role of MKK3-p38 MAPK signalling in the development of type 2 diabetes and renal injury in obese db/db mice,” Diabetologia, vol. 52, no. 2, pp. 347–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. M. A. Bogoyevitch, I. Boehm, A. Oakley, A. J. Ketterman, and R. K. Barr, “Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential,” Biochimica et Biophysica Acta, vol. 1697, no. 1-2, pp. 89–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. L. Wang, K. Matsushita, I. Araki, and M. Takeda, “Inhibition of c-Jun N-terminal kinase ameliorates apoptosis induced by hydrogen peroxide in the kidney tubule epithelial cells (NRK-52E),” Nephron, vol. 91, no. 1, pp. 142–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  131. B. J. Pulverer, J. M. Kyriakis, J. Avruch, E. Nikolakaki, and J. R. Woodgett, “Phosphorylation of c-jun mediated by MAP kinases,” Nature, vol. 353, no. 6345, pp. 670–674, 1991. View at Publisher · View at Google Scholar · View at Scopus
  132. Y. T. Ip and R. J. Davis, “Signal transduction by the c-Jun N-terminal kinase (JNK)—from inflammation to development,” Current Opinion in Cell Biology, vol. 10, no. 2, pp. 205–219, 1998. View at Publisher · View at Google Scholar · View at Scopus
  133. S. R. Himes, D. P. Sester, T. Ravasi, S. L. Cronau, T. Sasmono, and D. A. Hume, “The JNK are important for development and survival of macrophages,” Journal of Immunology, vol. 176, no. 4, pp. 2219–2228, 2006. View at Google Scholar · View at Scopus
  134. C. Mao, D. Ray-Gallet, A. Tavitian, and F. Moreau-Gachelin, “Differential phosphorylations of Spi-B and Spi-1 transcription factors,” Oncogene, vol. 12, no. 4, pp. 863–873, 1996. View at Google Scholar · View at Scopus
  135. R. S. Flanc, F. Y. Ma, G. H. Tesch et al., “A pathogenic role for JNK signaling in experimental anti-GBM glomerulonephritis,” Kidney International, vol. 72, no. 6, pp. 698–708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. F. Y. Ma, R. S. Flanc, G. H. Tesch et al., “A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis,” Journal of the American Society of Nephrology, vol. 18, no. 2, pp. 472–484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. M. H. De Borst, J. Prakash, M. Sandovici et al., “c-Jun NH2-terminal kinase is crucially involved in renal tubulo-interstitial inflammation,” Journal of Pharmacology and Experimental Therapeutics, vol. 331, no. 3, pp. 896–905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. M. H. De Borst, J. Prakash, W. B. W. H. Melenhorst et al., “Glomerular and tubular induction of the transcription factor c-Jun in human renal disease,” Journal of Pathology, vol. 213, no. 2, pp. 219–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  139. A. K. H. Lim, F. Y. Ma, D. J. Nikolic-Paterson et al., “Evaluation of JNK blockade as an early intervention treatment for type 1 diabetic nephropathy in hypertensive rats,” American Journal of Nephrology, vol. 34, no. 4, pp. 337–346, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Ijaz, T. Tejada, P. Catanuto et al., “Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes,” Kidney International, vol. 75, no. 4, pp. 381–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Mohan, R. L. Reddick, N. Musi et al., “Diabetic eNOS knockout mice develop distinct macro- and microvascular complications,” Laboratory Investigation, vol. 88, no. 5, pp. 515–528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. W. Sato, T. Kosugi, L. Zhang et al., “The pivotal role of VEGF on glomerular macrophage infiltration in advanced diabetic nephropathy,” Laboratory Investigation, vol. 88, no. 9, pp. 949–961, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Lassila, K. K. Seah, T. J. Allen et al., “Accelerated nephropathy in diabetic apolipoprotein E-knockout mouse: role of advanced glycation end products,” Journal of the American Society of Nephrology, vol. 15, no. 8, pp. 2125–2138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. Y. Kikuchi, T. Imakiire, M. Yamada et al., “Mizoribine reduces renal injury and macrophage infiltration in non-insulin-dependent diabetic rats,” Nephrology Dialysis Transplantation, vol. 20, no. 8, pp. 1573–1581, 2005. View at Publisher · View at Google Scholar · View at Scopus