Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012, Article ID 382082, 7 pages
http://dx.doi.org/10.1155/2012/382082
Clinical Study

Cytokines in Pericardial Effusion of Patients with Inflammatory Pericardial Disease

1Department of Cardiology, University Hospital Gießen & Marburg, Baldinger Straße, 35043 Marburg, Germany
2Department of Heart Surgery, University Hospital Gießen & Marburg, Baldinger Straße, 35043 Marburg, Germany

Received 4 November 2011; Revised 1 February 2012; Accepted 2 February 2012

Academic Editor: François Mach

Copyright © 2012 Konstantinos Karatolios et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Fujita, M. Ikemoto, M. Kishishita et al., “Elevated basic fibroblast growth factor in pericardial fluid of patients with unstable angina,” Circulation, vol. 94, no. 4, pp. 610–613, 1996. View at Google Scholar · View at Scopus
  2. K. Ono, A. Matsumori, T. Shioi, Y. Furukawa, and S. Sasayama, “Cytokine gene expression after myocardial lnfarction in rat hearts: possible implication in left ventricular remodeling,” Circulation, vol. 98, no. 2, pp. 149–156, 1998. View at Google Scholar · View at Scopus
  3. S. E. Francis, H. Holden, C. M. Holt, and G. W. Duff, “Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy,” Journal of Molecular and Cellular Cardiology, vol. 30, no. 2, pp. 215–223, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Pankuweit, A. Wädlich, E. Meyer, I. Portig, G. Hufnagel, and B. Maisch, “Cytokine activation in pericardial fluids in different forms of pericarditis,” Herz, vol. 25, no. 8, pp. 748–754, 2000. View at Google Scholar · View at Scopus
  5. L. M. Vila, J. R. Rivera Del Rio, L. M. Vila, Z. Rios, and E. Rivera, “Lymphocyte populations and cytokine concentrations in pericardial fluid from a systemic lupus erythematosus patient with cardiac tamponade,” Annals of the Rheumatic Diseases, vol. 58, no. 11, pp. 720–721, 1999. View at Google Scholar · View at Scopus
  6. N. Shikama, T. Terano, and A. Hirai, “A case of rheumatoid pericarditis with high concentrations of interleukin-6 in pericardial fluid,” Heart, vol. 83, no. 6, pp. 711–712, 2000. View at Google Scholar · View at Scopus
  7. F. Economidou, K. M. Antoniou, N. Tzanakis, K. Sfiridaki, N. M. Siafakas, and S. E. Schiza, “Angiogenic molecule Tie-2 and VEGF in the pathogenesis of pleural effusions,” Respiratory Medicine, vol. 102, no. 5, pp. 774–779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Marchi and V. C. Broaddus, “Mechanisms of pleural liquid formation in pleural inflammation,” Current Opinion in Pulmonary Medicine, vol. 3, no. 4, pp. 305–309, 1997. View at Google Scholar · View at Scopus
  9. S. Edamitsu, A. Matsukawa, S. Ohkawara, K. Takagi, H. Nariuchi, and M. Yoshinaga, “Role of TNFα, IL-1, and IL-1ra in the mediation of leukocyte infiltration and increased vascular permeability in rabbits with LPS-induced pleurisy,” Clinical Immunology and Immunopathology, vol. 75, no. 1, pp. 68–74, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Silva-Mejias, F. Gamboa-Antinolo, L. F. Lopez-Cortez, M. Cruz-Ruiz, and J. Pachon, “Interleukin-1β in pleural fluids of different etiologies: its role as inflammatory mediator in empyema,” Chest, vol. 108, no. 4, pp. 942–945, 1995. View at Google Scholar · View at Scopus
  11. D. R. Thickett, L. Armstrong, and A. B. Millar, “Vascular endothelial growth factor (VEGF) in inflammatory and malignant pleural effusions,” Thorax, vol. 54, no. 8, pp. 707–710, 1999. View at Google Scholar · View at Scopus
  12. M. Wörnle, M. Sauter, K. Kastenmüller et al., “Role of viral induced vascular endothelial growth factor (VEGF) production in pleural effusion and malignant mesothelioma,” Cell Biology International, vol. 33, no. 2, pp. 180–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Ferrara, “Molecular and biological properties of vascular endothelial growth factor,” Journal of Molecular Medicine, vol. 77, no. 7, pp. 527–543, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. J. S. Warren, “Interleukins and tumor necrosis factor in inflammation,” Critical Reviews in Clinical Laboratory Sciences, vol. 28, no. 1, pp. 37–59, 1990. View at Google Scholar · View at Scopus
  15. J. S. Warren, “Cytokines in autoimmune disease,” Clinics in Laboratory Medicine, vol. 17, no. 3, pp. 547–558, 1997. View at Google Scholar · View at Scopus
  16. E. Ruiz, C. Alemán, J. Alegre et al., “Angiogenic factors and angiogenesis inhibitors in exudative pleural effusions,” Lung, vol. 183, no. 3, pp. 185–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Baird, P. Mormede, and P. Bohlen, “Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor,” Biochemical and Biophysical Research Communications, vol. 126, no. 1, pp. 358–364, 1985. View at Google Scholar · View at Scopus
  18. B. Maisch, C. Bethge, L. Drude, G. Hufnagel, M. Herzum, and U. Schonian, “Pericardioscopy and epicardial biopsy new diagnostic tools in pericardial and perimyocardial disease,” European Heart Journal, vol. 15, no. C, pp. 68–73, 1994. View at Google Scholar · View at Scopus
  19. B. Maisch, P. M. Seferović, A. D. Ristić et al., “Guidelines on the diagnosis and management of pericardial diseases executive summary: the Task force on the diagnosis and management of pericardial diseases of the European society of cardiology,” European Heart Journal, vol. 25, no. 7, pp. 587–610, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Maisch, A. D. Ristić, and S. Pankuweit, “Intrapericardial treatment of autoreactive pericardial effusion with triamcinolone: the way to avoid side effects of systemic corticosteroid therapy,” European Heart Journal, vol. 23, no. 19, pp. 1503–1508, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Fiorelli, G. Vicidomini, M. Di Domenico et al., “Vascular endothelial growth factor in pleural fluid for differential diagnosis of benign and malignant origin and its clinical applications,” Interactive Cardiovascular and Thoracic Surgery, vol. 12, no. 3, pp. 420–424, 2011. View at Publisher · View at Google Scholar
  22. I. Kalomenidis, G. T. Stathopoulos, R. Barnette et al., “Vascular endothelial growth factor levels in post-CABG pleural effusions are associated with pleural inflammation and permeability,” Respiratory Medicine, vol. 101, no. 2, pp. 223–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Maisch, A. D. Ristić, and P. M. Seferovic, “New directions in diagnosis and treatment of Pericardial Disease: a project of the Taskforce on Pericardial Disease of the World Heart Federation,” Herz, vol. 25, no. 8, pp. 769–780, 2000. View at Google Scholar · View at Scopus
  24. D. S. Cheng, Y. C. G. Lee, J. T. Rogers et al., “Vascular endothelial growth factor level correlates with transforming growth factor-β isoform levels in pleural effusions,” Chest, vol. 118, no. 6, pp. 1747–1753, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Strizzi, G. Vianale, A. Catalano, R. Muraro, L. Mutti, and A. Procopio, “Basic fibroblast growth factor in mesothelioma pleural effusions: correlation with patient survival and angiogenesis,” International Journal of Oncology, vol. 18, no. 5, pp. 1093–1098, 2001. View at Google Scholar · View at Scopus
  26. O. Ishimoto, Y. Saijo, K. Narumi et al., “High level of vascular endothelial growth factor in hemorrhagic pleural effusion of cancer,” Oncology, vol. 63, no. 1, pp. 70–75, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Kuwabara, S. Ogawa, M. Matsumoto et al., “Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 10, pp. 4606–4610, 1995. View at Google Scholar · View at Scopus
  28. S. Blotnick, G. E. Peoples, M. R. Freeman, T. J. Eberlein, and M. Klagsbrun, “T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: differential production and release by CD4+ and CD8+ T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 8, pp. 2890–2894, 1994. View at Google Scholar · View at Scopus
  29. G. E. Peoples, S. Blotnick, K. Takahashii, M. R. Freeman, M. Klagsbrun, and T. J. Eberlein, “T lymphocytes that infiltrate tumors and atherosclerotic plaques produce heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor: a potential pathologic role,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 14, pp. 6547–6551, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. C. M. Gajdusek and S. Carbon, “Injury-induced release of basic fibroblast growth factor from bovine aortic endothelium,” Journal of Cellular Physiology, vol. 139, no. 3, pp. 570–579, 1989. View at Google Scholar · View at Scopus
  31. H. Zhang and A. C. Issekutz, “Growth factor regulation of neutrophil-endothelial cell interactions,” Journal of Leukocyte Biology, vol. 70, no. 2, pp. 225–232, 2001. View at Google Scholar · View at Scopus
  32. F. Wempe, V. Lindner, and H. G. Augustin, “Basic fibroblast growth factor (bFGF) regulates the expression of the CC chemokine monocyte chemoattractant protein-1 (MCP-1) in autocrine-activated endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 11, pp. 2471–2478, 1997. View at Google Scholar · View at Scopus
  33. B. Reuss, R. Dono, and K. Unsicker, “Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood-brain barrier permeability: evidence from mouse mutants,” Journal of Neuroscience, vol. 23, no. 16, pp. 6404–6412, 2003. View at Google Scholar · View at Scopus
  34. H. Zhang and A. C. Issekutz, “Down-modulation of monocyte transendothelial migration and endothelial adhesion molecule expression by fibroblast growth factor: reversal by the anti-angiogenic agent SU6668,” American Journal of Pathology, vol. 160, no. 6, pp. 2219–2230, 2002. View at Google Scholar · View at Scopus
  35. J. Kitayama, H. Nagawa, H. Yasuhara et al., “Suppressive effect of basic fibroblast growth factor on transendothelial emigration of CD4+ T-lymphocyte,” Cancer Research, vol. 54, no. 17, pp. 4729–4733, 1994. View at Google Scholar · View at Scopus
  36. T. Mazurek, L. Zhang, A. Zalewski et al., “Human epicardial adipose tissue is a source of inflammatory mediators,” Circulation, vol. 108, no. 20, pp. 2460–2466, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. A. M. Boylan, C. Ruegg, K. J. Kim et al., “Evidence of a role for mesothelial cell-derived interleukin 8 in the pathogenesis of asbestos-induced pleurisy in rabbits,” Journal of Clinical Investigation, vol. 89, no. 4, pp. 1257–1267, 1992. View at Google Scholar · View at Scopus
  38. V. B. Antony, J. W. Hott, S. L. Kunkel, S. W. Godbey, M. D. Burdick, and R. M. Strieter, “Pleural mesothelial cell expression of C-C (monocyte chemotactic peptide) and C-X-C (interleukin 8) chemokines,” American Journal of Respiratory Cell and Molecular Biology, vol. 12, no. 6, pp. 581–588, 1995. View at Google Scholar · View at Scopus
  39. K. A. Mohammed, N. Nasreen, J. Hardwick, C. S. Logie, C. E. Patterson, and V. B. Antony, “Bacterial induction of pleural mesothelial monolayer barrier dysfunction,” American Journal of Physiology, vol. 281, no. 1, pp. L119–L125, 2001. View at Google Scholar · View at Scopus
  40. T. Yoneda, M. Fujita, Y. Kihara et al., “Pericardial fluid from patients with ischemic heart disease accelerates the growth of human vascular smooth muscle cells,” Japanese Circulation Journal, vol. 64, no. 7, pp. 495–498, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Uchida, A. Yanagisawa-Miwa, F. Nakamura et al., “Angiogenic therapy of acute myocardial infarction by intrapericardial injection of basic fibroblast growth factor and heparin sulfate: an experimental study,” American Heart Journal, vol. 130, no. 6, pp. 1182–1188, 1995. View at Publisher · View at Google Scholar · View at Scopus