Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012, Article ID 506283, 10 pages
http://dx.doi.org/10.1155/2012/506283
Research Article

Elevated Circulating Interleukin-27 in Patients with Coronary Artery Disease Is Associated with Dendritic Cells, Oxidized Low-Density Lipoprotein, and Severity of Coronary Artery Stenosis

1Cardiovascular Department, Guangdong No.2 Provincial People's Hospital, Guangdong 510317, China
2Oncology Department, Guangdong No.2 Provincial People's Hospital, Guangdong 510317, China
3Cardiovascular Department, Zhujiang Hospital, Southern Medical University, Guangdong Province, Guangdong 510282, China
4Traditional Chinese Medicine Department, Zhujiang Hospital, Southern Medical University, Guangdong 510282, China

Received 12 March 2012; Revised 26 April 2012; Accepted 15 May 2012

Academic Editor: Hidde Bult

Copyright © 2012 Wen Jin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. F. Anderson and E. Chu, “Expanding priorities - Confronting chronic disease in countries with low income,” The New England Journal of Medicine, vol. 356, no. 3, pp. 209–211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. G. K. Hansson and A. Hermansson, “The immune system in atherosclerosis,” Nature Immunology, vol. 12, no. 3, pp. 204–212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Joffre, M. A. Nolte, R. Spörri, and C. R. E. Sousa, “Inflammatory signals in dendritic cell activation and the induction of adaptive immunity,” Immunological Reviews, vol. 227, no. 1, pp. 234–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Kushwah and J. Hu, “Complexity of dendritic cell subsets and their function in the host immune system,” Immunology, vol. 133, no. 4, pp. 409–419, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. G. J. Adema, “Dendritic cells from bench to bedside and back,” Immunology Letters, vol. 122, no. 2, pp. 128–130, 2009. View at Google Scholar · View at Scopus
  6. M. I. Cybulsky and J. Jongstra-Bilen, “Resident intimal dendritic cells and the initiation of atherosclerosis,” Current Opinion in Lipidology, vol. 21, no. 5, pp. 397–403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Niessner and C. M. Weyand, “Dendritic cells in atherosclerotic disease,” Clinical Immunology, vol. 134, no. 1, pp. 25–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. E. K. Koltsova and K. Ley, “How dendritic cells shape atherosclerosis,” Trends in Immunology, vol. 32, no. 11, pp. 540–547, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Andersson, P. Libby, and G. K. Hansson, “Adaptive immunity and atherosclerosis,” Clinical Immunology, vol. 134, no. 1, pp. 33–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Taleb, A. Tedgui, and Z. Mallat, “Adaptive T cell immune responses and atherogenesis,” Current Opinion in Pharmacology, vol. 10, no. 2, pp. 197–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Lu, D. Lu, U. Narayan, and V. V. Kakkar, “The role of T-helper cells in atherosclerosis,” Cardiovascular and Hematological Agents in Medicinal Chemistry, vol. 9, no. 1, pp. 25–41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A. Hunter, “New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions,” Nature Reviews Immunology, vol. 5, no. 7, pp. 521–531, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Devergne, M. Hummel, H. Koeppen et al., “A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes,” Journal of Virology, vol. 70, no. 2, pp. 1143–1153, 1996. View at Google Scholar · View at Scopus
  14. S. Pflanz, J. C. Timans, J. Cheung et al., “IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells,” Immunity, vol. 16, no. 6, pp. 779–790, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Pflanz, L. Hibbert, J. Mattson et al., “WSX-1 and Glycoprotein 130 Constitute a Signal-Transducing Receptor for IL-27,” Journal of Immunology, vol. 172, no. 4, pp. 2225–2231, 2004. View at Google Scholar · View at Scopus
  16. Q. Chen, N. Ghilardi, H. Wang et al., “Development of Th1-type immune responses requires the type I cytokine receptor TCCR,” Nature, vol. 407, no. 6806, pp. 916–920, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. C. A. Sprecher, F. J. Grant, J. W. Baumgartner et al., “Cloning and characterization of a novel class I cytokine receptor,” Biochemical and Biophysical Research Communications, vol. 246, no. 1, pp. 82–90, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Yoshida, S. Hamano, G. Senaldi et al., “WSX-1 is required for the initiation of Th1 responses and resistance to L. major infection,” Immunity, vol. 15, no. 4, pp. 569–578, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Yoshida, M. Nakaya, and Y. Miyazaki, “Interleukin 27: a double-edged sword for offense and defense,” Journal of Leukocyte Biology, vol. 86, no. 6, pp. 1295–1303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. K. S. Stamatelopoulos, J. P. Lekakis, P. Tseke et al., “Differential associations of renal function with coronary and peripheral atherosclerosis,” International Journal of Cardiology, vol. 135, no. 2, pp. 162–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. F. Alber, C. Duftner, M. Wanitschek et al., “Neopterin, CD4+CD28- lymphocytes and the extent and severity of coronary artery disease,” International Journal of Cardiology, vol. 135, no. 1, pp. 27–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Zaguri, I. Verbovetski, M. Atallah et al., “'Danger' effect of low-density lipoprotein (LDL) and oxidized LDL on human immature dendritic cells,” Clinical and Experimental Immunology, vol. 149, no. 3, pp. 543–552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Johnston, T. Jernberg, B. Lagerqvist, A. Siegbahn, and L. Wallentin, “Oxidized low-density lipoprotein as a predictor of outcome in patients with unstable coronary artery disease,” International Journal of Cardiology, vol. 113, no. 2, pp. 167–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. G. K. Hansson, “Mechanisms of disease: inflammation, atherosclerosis, and coronary artery disease,” The New England Journal of Medicine, vol. 352, no. 16, pp. 1685–1626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Takeda, S. Hamano, A. Yamanaka et al., “Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment,” Journal of Immunology, vol. 170, no. 10, pp. 4886–4890, 2003. View at Google Scholar · View at Scopus
  26. D. Artis, A. Villarino, M. Silverman et al., “The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity,” Journal of Immunology, vol. 173, no. 9, pp. 5626–5634, 2004. View at Google Scholar · View at Scopus
  27. T. Yoshimoto, T. Yoshimoto, K. Yasuda, J. Mizuguchi, and K. Nakanishi, “IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation,” Journal of Immunology, vol. 179, no. 7, pp. 4415–4423, 2007. View at Google Scholar · View at Scopus
  28. M. Batten, J. Li, S. Yi et al., “Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells,” Nature Immunology, vol. 7, no. 9, pp. 929–936, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. S. Stumhofer, A. Laurence, E. H. Wilson et al., “Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system,” Nature Immunology, vol. 7, no. 9, pp. 937–945, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Hamano, K. Himeno, Y. Miyazaki et al., “WSX-1 is required for resistance to Trypanosoma cruzi infection by regulation of proinflammatory cytokine production,” Immunity, vol. 19, no. 5, pp. 657–667, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Villarino, L. Hibbert, L. Lieberman et al., “The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection,” Immunity, vol. 19, no. 5, pp. 645–655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Awasthi, Y. Carrier, J. P. S. Peron et al., “A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells,” Nature Immunology, vol. 8, no. 12, pp. 1380–1389, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. A. Summers, R. K. S. Phoon, J. D. Ooi, S. R. Holdsworth, and A. R. Kitching, “The IL-27 receptor has biphasic effects in crescentic glomerulonephritis mediated through Th1 responses,” American Journal of Pathology, vol. 178, no. 2, pp. 580–590, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Siebler, S. Wirtz, C. Frenzel et al., “Cutting edge: a key pathogenic role of IL-27 in T cell-mediated hepatitis,” Journal of Immunology, vol. 180, no. 1, pp. 30–33, 2008. View at Google Scholar · View at Scopus
  35. E. E. S. Nieuwenhuis, M. F. Neurath, N. Corazza et al., “Disruption of T helper 2-immune responses in Epstein-Barr virus-induced gene 3-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 16951–16956, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Yoshizaki, K. Yanaba, Y. Iwata et al., “Elevated serum interleukin-27 levels in patients with systemic sclerosis: association with T cell, B cell and fibroblast activation,” Annals of the Rheumatic Diseases, vol. 70, no. 1, pp. 194–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Rajaiah, M. Puttabyatappa, S. K. Polumuri, and K. D. Moudgil, “Interleukin-27 and interferon-γ are involved in regulation of autoimmune arthritis,” Journal of Biological Chemistry, vol. 286, no. 4, pp. 2817–2825, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Miyazaki, H. Inoue, M. Matsumura et al., “Exacerbation of experimental allergic asthma by augmented Th2 responses in WSX-1-deficient mice,” Journal of Immunology, vol. 175, no. 4, pp. 2401–2407, 2005. View at Google Scholar · View at Scopus
  39. H. Fujita, A. Teng, R. Nozawa et al., “Production of both IL-27 and IFN-γ after the treatment with a ligand for invariant NK T cells is responsible for the suppression of TH2 response and allergic inflammation in a mouse experimental asthma model,” Journal of Immunology, vol. 183, no. 1, pp. 254–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Batten, J. Li, S. Yi et al., “Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells,” Nature Immunology, vol. 7, no. 9, pp. 929–936, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. D. C. Fitzgerald, B. Ciric, T. Touil et al., “Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 179, no. 5, pp. 3268–3275, 2007. View at Google Scholar · View at Scopus
  42. D. C. Fitzgerald, G. X. Zhang, M. El-Behi et al., “Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells,” Nature Immunology, vol. 8, no. 12, pp. 1372–1379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. S. Lee, A. Amadi-Obi, C. R. Yu, and C. E. Egwuagu, “Retinal cells suppress intraocular inflammation (uveitis) through production of interleukin-27 and interleukin-10,” Immunology, vol. 132, no. 4, pp. 492–502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. L. E. Rosas, A. A. Satoskar, K. M. Roth et al., “Interleukin-27R (WSX-1/T-cell cytokine receptor) gene-deficient mice display enhanced resistance to Leishmania donovani infection but develop severe liver immunopathology,” American Journal of Pathology, vol. 168, no. 1, pp. 158–169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. R. M. Steinman and Z. A. Cohn, “Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution,” Journal of Experimental Medicine, vol. 137, no. 5, pp. 1142–1162, 1973. View at Google Scholar · View at Scopus
  46. M. Rossi and J. W. Young, “Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity,” Journal of Immunology, vol. 175, no. 3, pp. 1373–1381, 2005. View at Google Scholar · View at Scopus
  47. Y. V. Bobryshev, “Dendritic cells and their role in atherogenesis,” Laboratory Investigation, vol. 90, no. 7, pp. 970–984, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. E. A. Van Vré, V. Y. Hoymans, H. Bult et al., “Decreased number of circulating plasmacytoid dendritic cells in patients with atherosclerotic coronary artery disease,” Coronary Artery Disease, vol. 17, no. 3, pp. 243–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Yilmaz, J. Weber, I. Cicha et al., “Decrease in circulating myeloid dendritic cell precursors in coronary artery disease,” Journal of the American College of Cardiology, vol. 48, no. 1, pp. 70–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. I. Van Brussel, E. A. Van Vré, G. R. Y. De Meyer, C. J. Vrints, J. M. Bosmans, and H. Bult, “Decreased numbers of peripheral blood dendritic cells in patients with coronary artery disease are associated with diminished plasma Flt3 ligand levels and impaired plasmacytoid dendritic cell function,” Clinical Science, vol. 120, no. 9, pp. 415–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Su, A. Sun, D. Xu et al., “Tongxinluo inhibits oxidized low-density lipoprotein-induced maturation of human dendritic cells via activating peroxisome proliferator-activated receptor gamma pathway,” Journal of Cardiovascular Pharmacology, vol. 56, no. 2, pp. 177–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M. M. Ramadan, M. Kodama, S. Hirono et al., “Evaluation of oxidized low-density lipoprotein in the coronary circulation of patients with coronary artery disease, and its association with percutaneous coronary intervention,” International Journal of Cardiology, vol. 134, no. 3, pp. e117–e119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Ishigaki, Y. Oka, and H. Katagiri, “Circulating oxidized LDL: a biomarker and a pathogenic factor,” Current Opinion in Lipidology, vol. 20, no. 5, pp. 363–369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Itabe, T. Obama, and R. Kato, “The dynamics of oxidized LDL during atherogenesis,” Journal of Lipid, vol. 2011, Article ID 418313, 9 pages, 2011. View at Publisher · View at Google Scholar
  55. H. Ait-Oufella, S. Taleb, Z. Mallat, and A. Tedgui, “Recent advances on the role of cytokines in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 5, pp. 969–979, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. V. Bobryshev and R. S. A. Lord, “Ultrastructural recognition of cells with dendritic cell morphology in human aortic intima. Contacting interactions of vascular dendritic cells in athero-resistant and athero-prone areas of the normal aorta,” Archives of Histology and Cytology, vol. 58, no. 3, pp. 307–322, 1995. View at Google Scholar · View at Scopus
  57. K. E. Paulson, S. N. Zhu, M. Chen, S. Nurmohamed, J. Jongstra-Bilen, and M. I. Cybulsky, “Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis,” Circulation Research, vol. 106, no. 2, pp. 383–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Jongstra-Bilen, M. Haidari, S. N. Zhu, M. Chen, D. Guha, and M. I. Cybulsky, “Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis,” Journal of Experimental Medicine, vol. 203, no. 9, pp. 2073–2083, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Liu, Y. R. A. Yu, J. A. Spencer et al., “CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 2, pp. 243–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Yilmaz, M. Lochno, F. Traeg et al., “Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques,” Atherosclerosis, vol. 176, no. 1, pp. 101–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. V. Bobryshev and R. S. A. Lord, “Co-accumulation of dendritic cells and natural killer T cells within rupture-prone regions in human atherosclerotic plaques,” Journal of Histochemistry and Cytochemistry, vol. 53, no. 6, pp. 781–785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. I. Kawahara, N. Kitagawa, K. Tsutsumi, I. Nagata, T. Hayashi, and T. Koji, “The expression of vascular dendritic cells in human atherosclerotic carotid plaques,” Human Pathology, vol. 38, no. 9, pp. 1378–1385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Erbel, K. Sato, F. B. Meyer et al., “Functional profile of activated dendritic cells in unstable atherosclerotic plaque,” Basic Research in Cardiology, vol. 102, no. 2, pp. 123–132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. E. A. Van Vré, J. M. Bosmans, I. Van Brussel et al., “Immunohistochemical characterisation of dendritic cells in human atherosclerotic lesions: possible pitfalls,” Pathology, vol. 43, no. 3, pp. 239–247, 2011. View at Publisher · View at Google Scholar · View at Scopus