Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012, Article ID 512926, 18 pages
http://dx.doi.org/10.1155/2012/512926
Review Article

The Role of Src Kinase in Macrophage-Mediated Inflammatory Responses

1Department of Genetic Engineering, Sungkyunkwan University, Suwon 446-746, Republic of Korea
2Research Institute and Hospital, National Cancer Center, Goyang 410-769, Republic of Korea

Received 12 August 2012; Accepted 28 September 2012

Academic Editor: Marja Ojaniemi

Copyright © 2012 Se Eun Byeon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Del Donno, D. Bittesnich, A. Chetta, D. Olivieri, and M. T. Lopez-Vidriero, “The effect of inflammation on mucociliary clearance asthma: an overview,” Chest, vol. 118, no. 4, pp. 1142–1149, 2000. View at Google Scholar · View at Scopus
  2. Y. P. Chong, K. K. Ia, T. D. Mulhern, and H. C. Cheng, “Endogenous and synthetic inhibitors of the Src-family protein tyrosine kinases,” Biochimica et Biophysica Acta, vol. 1754, no. 1-2, pp. 210–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Corey and S. M. Anderson, “Src-related protein tyrosine kinases in hematopoiesis,” Blood, vol. 93, no. 1, pp. 1–14, 1999. View at Google Scholar · View at Scopus
  4. T. J. Boggon and M. J. Eck, “Structure and regulation of Src family kinases,” Oncogene, vol. 23, no. 48, pp. 7918–7927, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Ingley, J. R. Schneider, C. J. Payne et al., “Csk-binding protein mediates sequential enzymatic down-regulation and degradation of Lyn in erythropoietin-stimulated cells,” Journal of Biological Chemistry, vol. 281, no. 42, pp. 31920–31929, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. D. Resh, “Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins,” Biochimica et Biophysica Acta, vol. 1451, no. 1, pp. 1–16, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Giannoni, M. L. Taddei, and P. Chiarugi, “Src redox regulation: again in the front line,” Free Radical Biology and Medicine, vol. 49, no. 4, pp. 516–527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. A. Koch, D. Anderson, M. F. Moran, C. Ellis, and T. Pawson, “SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins,” Science, vol. 252, no. 5006, pp. 668–674, 1991. View at Google Scholar · View at Scopus
  9. R. Roskoski, “Src protein-tyrosine kinase structure and regulation,” Biochemical and Biophysical Research Communications, vol. 324, no. 4, pp. 1155–1164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Williams, A. Weijland, S. Gonfloni et al., “The 2.35 Å crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions,” Journal of Molecular Biology, vol. 274, no. 5, pp. 757–775, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Xu, S. C. Harrison, and M. J. Eck, “Three-dimensional structure of the tyrosine kinase c-Src,” Nature, vol. 385, no. 6617, pp. 595–602, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Roskoski, “Src kinase regulation by phosphorylation and dephosphorylation,” Biochemical and Biophysical Research Communications, vol. 331, no. 1, pp. 1–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Okada and H. Nakagawa, “A protein tyrosine kinase involved in regulation of pp60(c-src) function,” Journal of Biological Chemistry, vol. 264, no. 35, pp. 20886–20893, 1989. View at Google Scholar · View at Scopus
  14. S. Zrihan-Licht, J. Lim, I. Keydar, M. X. Sliwkowski, J. E. Groopman, and H. Avraham, “Association of Csk-homologous kinase (CHK) (formerly MATK) with HER- 2/ErbB-2 in breast cancer cells,” Journal of Biological Chemistry, vol. 272, no. 3, pp. 1856–1863, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. P. Chong, T. D. Mulhern, H. J. Zhu et al., “A novel non-catalytic mechanism employed by the C-terminal Src-homologous kinase to inhibit Src-family kinase activity,” Journal of Biological Chemistry, vol. 279, no. 20, pp. 20752–20766, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Baker, J. Gamble, R. Tooze et al., “Development of T-leukaemias in CD45 tyrosine phosphatase-deficient mutant lck mice,” EMBO Journal, vol. 19, no. 17, pp. 4644–4654, 2000. View at Google Scholar · View at Scopus
  17. G. G. Chiang and B. M. Sefton, “Specific dephosphorylation of the lck tyrosine protein knase at Tyr-394 by the SHP-1 protein-tyrosine phosphatase,” Journal of Biological Chemistry, vol. 276, no. 25, pp. 23173–23178, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. V. A. Levin, “Basis and importance of Src as a target in cancer.,” Cancer treatment and research, vol. 119, pp. 89–119, 2004. View at Google Scholar · View at Scopus
  19. J. Su, M. Muranjan, and J. Sap, “Receptor protein tyrosine phosphatase α activates Src-family kinases and controls integrin-mediated responses in fibroblasts,” Current Biology, vol. 9, no. 10, pp. 505–511, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Zachary, “VEGF signalling: integration and multi-tasking in endothelial cell biology,” Biochemical Society Transactions, vol. 31, no. 6, pp. 1171–1177, 2003. View at Google Scholar · View at Scopus
  21. Z. Korade-Mirnics and S. J. Corey, “Src kinase-mediated signaling in leukocytes,” Journal of Leukocyte Biology, vol. 68, no. 5, pp. 603–613, 2000. View at Google Scholar · View at Scopus
  22. M. V. Barone and S. A. Courtneidge, “Myc but not Fos rescue of PDGF signalling block caused by kinase-inactive Src,” Nature, vol. 378, no. 6556, pp. 509–512, 1995. View at Google Scholar · View at Scopus
  23. S. A. Courtneidge, R. Dhand, D. Pilat, G. M. Twamley, M. D. Waterfield, and M. F. Roussel, “Activation of Src family kinases by colony stimulating factor-1, and their association with its receptor,” EMBO Journal, vol. 12, no. 3, pp. 943–950, 1993. View at Google Scholar · View at Scopus
  24. M. E. Kehrli, J. L. Burton, B. J. Nonnecke, and E. K. Lee, “Effects of stress on leukocyte trafficking and immune responses: implications for vaccination,” Advances in Veterinary Medicine, vol. 41, no. C, pp. 61–81, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. S. M. Thomas, P. Soriano, and A. Imamoto, “Specific and redundant roles of Src and Fyn in organizing the cytoskeleton,” Nature, vol. 376, no. 6537, pp. 267–271, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Burridge, C. E. Turner, and L. H. Romer, “Tyrosine phosphorylation of paxillin and pp125(FAK) accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly,” Journal of Cell Biology, vol. 119, no. 4, pp. 893–903, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. D. D. Schlaepfer, S. K. Hanks, T. Hunter, and P. Van der Geer, “Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase,” Nature, vol. 372, no. 6508, pp. 786–791, 1994. View at Google Scholar · View at Scopus
  28. E. Rozengurt, “Mitogenic signaling pathways induced by G protein-coupled receptors,” Journal of Cellular Physiology, vol. 213, no. 3, pp. 589–602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Zen and Y. Liu, “Role of different protein tyrosine kinases in fMLP-induced neutrophil transmigration,” Immunobiology, vol. 213, no. 1, pp. 13–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Gutkind, “The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades,” Journal of Biological Chemistry, vol. 273, no. 4, pp. 1839–1842, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. P. A. Kiener, B. M. Rankin, A. L. Burkhardt et al., “Cross-linking of Fcγ receptor I (FcγRI) and receptor II (FcγRII) on monocytic cells activates a signal transduction pathway common to both Fc receptors that involves the stimulation of p72 Syk protein tyrosine kinase,” Journal of Biological Chemistry, vol. 268, no. 32, pp. 24442–24448, 1993. View at Google Scholar · View at Scopus
  32. G. Sánchez-Mejorada and C. Rosales, “Signal transduction by immunoglobulin Fc receptors,” Journal of Leukocyte Biology, vol. 63, no. 5, pp. 521–533, 1998. View at Google Scholar · View at Scopus
  33. S. C. Silverstein, S. Greenberg, F. DiVergilio, and T. Steinberg, Fundamental Immunology, Raven, New York, NY, USA, 1989.
  34. N. Bewarder, V. Weinrich, P. Budde et al., “In vivo and in vitro specificity of protein tyrosine kinases for immunoglobulin G receptor (FcγRII) phosphorylation,” Molecular and Cellular Biology, vol. 16, no. 9, pp. 4735–4743, 1996. View at Google Scholar · View at Scopus
  35. J. B. Bolen, R. B. Rowley, C. Spana, and A. Y. Tsygankov, “The Src family of tyrosine protein kinases in hemopoietic signal transduction,” FASEB Journal, vol. 6, no. 15, pp. 3403–3409, 1992. View at Google Scholar · View at Scopus
  36. M. M. Huang, Z. Indik, L. F. Brass, J. A. Hoxie, A. D. Schreiber, and J. S. Brugge, “Activation of FcγRII induces tyrosine phosphorylation of multiple proteins including FcγRII,” Journal of Biological Chemistry, vol. 267, no. 8, pp. 5467–5473, 1992. View at Google Scholar · View at Scopus
  37. S. Hunter, L. M. Huang, Z. K. Indik, and A. D. Schreiber, “FcγRIIA-mediated phagocytosis and receptor phosphorylation in cells deficient in the protein tyrosine kinase Src,” Experimental Hematology, vol. 21, no. 11, pp. 1492–1497, 1993. View at Google Scholar · View at Scopus
  38. G. T. Williams, C. A. Smith, E. Spooncer, T. M. Dexter, and D. R. Taylor, “Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis,” Nature, vol. 343, no. 6253, pp. 76–79, 1990. View at Publisher · View at Google Scholar · View at Scopus
  39. S. M. Anderson, P. M. Carroll, and F. D. Lee, “Abrogation of IL-3 dependent growth requires a functional v-src gene product: evidence for an autocrine growth cycle,” Oncogene, vol. 5, no. 3, pp. 317–325, 1990. View at Google Scholar · View at Scopus
  40. F. Dong and A. C. Larner, “Activation of Akt kinase by granulocyte colony-stimulating factor (G- CSF): evidence for the role of a tyrosine kinase activity distinct from the janus kinases,” Blood, vol. 95, no. 5, pp. 1656–1662, 2000. View at Google Scholar · View at Scopus
  41. T. H. Page, M. Smolinska, J. Gillespie, A. M. Urbaniak, and B. M. J. Foxwell, “Tyrosine kinases and inflammatory signalling,” Current Molecular Medicine, vol. 9, no. 1, pp. 69–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. S. Lee and Y. J. Kim, “Signaling pathways downstream of pattern-recognition receptors and their cross talk,” Annual Review of Biochemistry, vol. 76, pp. 447–480, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Kaisho and S. Akira, “Critical roles of Toll-like receptors in host defense,” Critical Reviews in Immunology, vol. 20, no. 5, pp. 393–405, 2000. View at Google Scholar · View at Scopus
  44. C. Mohan and J. Zhu, “Toll-like receptor signaling pathways—therapeutic opportunities,” Mediators of Inflammation, vol. 2010, Article ID 781235, 7 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. L. A. J. O'Neill, “Primer: toll-like receptor signaling pathways-what do rheumatologists need to know?” Nature Clinical Practice Rheumatology, vol. 4, no. 6, pp. 319–327, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. K. S. Kim, B. Y. Rhim, S. K. Eo, and K. Kim, “Cellular signaling molecules associated with peptidoglycan-induced ccl3 up-regulation,” Biomolecules and Therapeutics, vol. 19, no. 3, pp. 302–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. C. H. Tang, C. J. Hsu, W. H. Yang, and Y. C. Fong, “Lipoteichoic acid enhances IL-6 production in human synovial fibroblasts via TLR2 receptor, PKCδ and c-Src dependent pathways,” Biochemical Pharmacology, vol. 79, no. 11, pp. 1648–1657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. H. L. Hsieh, H. H. Wang, C. Y. Wu, W. H. Tung, and C. M. Yang, “Lipoteichoic acid induces matrix metalloproteinase-9 expression via transactivation of PDGF receptors and NF-kappaB activation in rat brain astrocytes.,” Neurotoxicity Research, vol. 17, no. 4, pp. 344–359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Liljeroos, R. Vuolteenaho, S. Morath, T. Hartung, M. Hallman, and M. Ojaniemi, “Bruton's tyrosine kinase together with PI 3-kinase are part of Toll-like receptor 2 multiprotein complex and mediate LTA induced Toll-like receptor 2 responses in macrophages,” Cellular Signalling, vol. 19, no. 3, pp. 625–633, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. J. Chang, M. S. Wu, J. T. Lin et al., “Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-κB activation,” Molecular Pharmacology, vol. 66, no. 6, pp. 1465–1477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Adamo, S. Sokol, G. Soong, M. I. Gomez, and A. Prince, “Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5,” American Journal of Respiratory Cell and Molecular Biology, vol. 30, no. 5, pp. 627–634, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Chun and A. Prince, “Ca2+ signaling in airway epithelial cells facilitates leukocyte recruitment and transepithelial migration,” Journal of Leukocyte Biology, vol. 86, no. 5, pp. 1135–1144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Yamashita, S. Chattopadhyay, V. Fensterl, Y. Zhang, and G. C. Sen, “A TRIF-independent branch of TLR3 signaling,” Journal of Immunology, vol. 188, no. 6, pp. 2825–2833, 2012. View at Publisher · View at Google Scholar
  54. Y. J. Chen, M. Y. Hsieh, M. Y. Chang et al., “Eps8 protein facilitates phagocytosis by increasing TLR4-MyD88 protein interaction in lipopolysaccharide-stimulated macrophages,” The Journal of Biological Chemistry, vol. 287, no. 22, pp. 18806–18819, 2012. View at Google Scholar
  55. T. T. Nguyen, I. B. Johnsen, C. F. Knetter et al., “Differential gene expression downstream of toll-like receptors (TLRs): role of c-Src and activating transcription factor 3 (ATF3),” Journal of Biological Chemistry, vol. 285, no. 22, pp. 17011–17019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Gianni, B. Bohl, S. A. Courtneidge, and G. M. Bokoch, “The involvement of the tyrosine kinase c-Src in the regulation of reactive oxygen species generation mediated by NADPH oxidase-1,” Molecular Biology of the Cell, vol. 19, no. 7, pp. 2984–2994, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. H. J. Kim, S. G. Lee, I. G. Chae et al., “Antioxidant effects of fermented red ginseng extracts in streptozotocin- induced diabetic rats,” Journal of Ginseng Research, vol. 35, no. 2, pp. 129–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. M. R. Abid, Z. Kachra, K. C. Spokes, and W. C. Aird, “NADPH oxidase activity is required for endothelial cell proliferation and migration,” FEBS Letters, vol. 486, no. 3, pp. 252–256, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Kim, J. Y. Kim, Z. Y. Ryoo, and S. Lee, “Over-expressed peroxiredoxin I protects against oxidative damage in mouse embryonic fibroblasts lacking peroxiredoxin II,” Biomolecules & Therapeutics, vol. 19, no. 4, pp. 451–459, 2011. View at Google Scholar
  60. Y. A. Suh, R. S. Arnold, B. Lassegue et al., “Cell transformation by the superoxide-generating oxidase Mox1,” Nature, vol. 401, no. 6748, pp. 79–82, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Sadok, V. Bourgarel-Rey, F. Gattacceca, C. Penel, M. Lehmann, and H. Kovacic, “Nox1-dependent superoxide production controls colon adenocarcinoma cell migration,” Biochimica et Biophysica Acta, vol. 1783, no. 1, pp. 23–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Yang, S. E. Lee, S. I. Jeong, C. S. Park, Y. H. Jin, and Y. S. Park, “Up-regulation of heme oxygenase-1 by Korean red ginseng water extract as a cytoprotective effect in human endothelial cells,” Journal of Ginseng Research, vol. 35, no. 3, pp. 352–359, 2011. View at Publisher · View at Google Scholar
  63. A. K. Chowdhury, T. Watkins, N. L. Parinandi et al., “Src-mediated tyrosine phosphorylation of p47phox in hyperoxia-induced activation of NADPH oxidase and generation of reactive oxygen species in lung endothelial cells,” Journal of Biological Chemistry, vol. 280, no. 21, pp. 20700–20711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. Z. Wang, T. Rui, M. Yang, F. Valiyeva, and P. R. Kvietys, “Alveolar macrophages from septic mice promote polymorphonuclear leukocyte transendothelial migration via an endothelial cell Src kinase/NADPH oxidase pathway,” Journal of Immunology, vol. 181, no. 12, pp. 8735–8744, 2008. View at Google Scholar · View at Scopus
  65. H. Sumimoto, K. Hata, K. Mizuki et al., “Assembly and activation of the phagocyte NADPH oxidase: specific interaction of the N-terminal Src homology 3 domain of p47(phox) with p22(phox) is required for activation of the NADPH oxidase,” Journal of Biological Chemistry, vol. 271, no. 36, pp. 22152–22158, 1996. View at Publisher · View at Google Scholar · View at Scopus
  66. H. S. Deshmukh, C. Shaver, L. M. Case et al., “Acrolein-activated matrix metalloproteinase 9 contributes to persistent mucin production,” American Journal of Respiratory Cell and Molecular Biology, vol. 38, no. 4, pp. 446–454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. W. Ning, Y. Dong, J. Sun et al., “Cigarette smoke stimulates matrix metalloproteinase-2 activity via EGR-1 in human lung fibroblasts,” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 4, pp. 480–490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Arredondo, A. I. Chernyavsky, D. L. Jolkovsky, K. E. Pinkerton, and S. A. Grando, “Receptor-mediated tobacco toxicity: acceleration of sequential expression of α5 and α7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke,” FASEB Journal, vol. 22, no. 5, pp. 1356–1368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. S. W. Ryter, H. P. Kim, K. Nakahira, B. S. Zuckerbraun, D. Morse, and A. M. K. Choi, “Protective functions of heme oxygenase-1 and carbon monoxide in the respiratory system,” Antioxidants and Redox Signaling, vol. 9, no. 12, pp. 2157–2173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Cohen, “The immunopathogenesis of sepsis,” Nature, vol. 420, no. 6917, pp. 885–891, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. L. B. Ware and M. A. Matthay, “The acute respiratory distress syndrome,” New England Journal of Medicine, vol. 342, no. 18, pp. 1334–1349, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Zhang, W. R. Summer, G. J. Bagby, and S. Nelson, “Innate immunity and pulmonary host defense,” Immunological Reviews, vol. 173, pp. 39–51, 2000. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Delclaux and E. Azoulay, “Inflammatory response to infectious pulmonary injury,” European Respiratory Journal, Supplement, vol. 22, no. 42, 2003. View at Google Scholar · View at Scopus
  74. K. S. Farley, L. F. Wang, H. M. Razavi et al., “Effects of macrophage inducible nitric oxide synthase in murine septic lung injury,” American Journal of Physiology, vol. 290, no. 6, pp. L1164–L1172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Moon, H. J. Park, Y. H. Choi, E. M. Park, V. Castranova, and J. L. Kang, “Pulmonary inflammation after intraperitoneal administration of ultrafine titanium dioxide (TiO2) at rest or in lungs primed with lipopolysaccharide,” Journal of Toxicology and Environmental Health A, vol. 73, no. 5-6, pp. 396–409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. P. L. Stein, H. M. Lee, S. Rich, and P. Soriano, “pp59(fyn) mutant mice display differential signaling in thymocytes and peripheral T cells,” Cell, vol. 70, no. 5, pp. 741–750, 1992. View at Publisher · View at Google Scholar · View at Scopus
  77. E. Gaudreault, C. Thompson, J. Stankova, and M. Rola-Pleszczynski, “Involvement of BLT1 endocytosis and Yes kinase activation in leukotriene B4-induced neutrophil degranulation,” Journal of Immunology, vol. 174, no. 6, pp. 3617–3625, 2005. View at Google Scholar · View at Scopus
  78. S. N. Malek, D. I. Dordai, J. Reim, H. Dintzis, and S. Desiderio, “Malignant transformation of early lymphoid progenitors in mice expressing an activated Blk tyrosine kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 13, pp. 7351–7356, 1998. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Chiaradonna, L. Fontana, C. Iavarone et al., “Urokinase receptor-dependent and -independent p56/59(hck) activation state is a molecular switch between myelomonocytic cell motility and adherence,” EMBO Journal, vol. 18, no. 11, pp. 3013–3023, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. C. J. Fitzer-Attas, M. Lowry, M. T. Crowley et al., “Fcγ receptor-mediated phagocytosis in macrophages lacking the Src family tyrosine kinases Hck, Fgr, and Lyn,” Journal of Experimental Medicine, vol. 191, no. 4, pp. 669–681, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. J. M. Dal Porto, K. Burke, and J. C. Cambier, “Regulation of BCR signal transduction in B-1 cells requires the expression of the Src family kinase Lck,” Immunity, vol. 21, no. 3, pp. 443–453, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. M. L. Hibbs, D. M. Tarlinton, J. Armes et al., “Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease,” Cell, vol. 83, no. 2, pp. 301–311, 1995. View at Google Scholar · View at Scopus
  83. S. K. Yoo, T. W. Starnes, Q. Deng, and A. Huttenlocher, “Lyn is a redox sensor that mediates leukocyte wound attraction in vivo,” Nature, vol. 480, no. 7375, pp. 109–112, 2011. View at Publisher · View at Google Scholar
  84. Z. Ming, Y. Hu, J. Xiang, P. Polewski, P. J. Newman, and D. K. Newman, “Lyn and PECAM-1 function as interdependent inhibitors of platelet aggregation,” Blood, vol. 117, no. 14, pp. 3903–3906, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. A. K. Somani, J. S. Bignon, G. B. Mills, K. A. Siminovitch, and D. R. Branch, “Src kinase activity is regulated by the SHP-1 protein-tyrosine phosphatase,” Journal of Biological Chemistry, vol. 272, no. 34, pp. 21113–21119, 1997. View at Publisher · View at Google Scholar · View at Scopus
  86. J. D. Bjorge, A. Pang, and D. J. Fujita, “Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines,” Journal of Biological Chemistry, vol. 275, no. 52, pp. 41439–41446, 2000. View at Publisher · View at Google Scholar · View at Scopus
  87. D. A. Jones and C. W. Benjamin, “Phosphorylation of growth factor receptor binding protein-2 by pp60(c- src) tyrosine kinase,” Archives of Biochemistry and Biophysics, vol. 337, no. 2, pp. 143–148, 1997. View at Publisher · View at Google Scholar · View at Scopus
  88. L. R. Stephens, K. E. Anderson, and P. T. Hawkins, “Src Family Kinases Mediate Receptor-stimulated, Phosphoinositide 3-Kinase-dependent, Tyrosine Phosphorylation of Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides-1 in Endothelial and B Cell Lines,” Journal of Biological Chemistry, vol. 276, no. 46, pp. 42767–42773, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Ostareck-Lederer, D. H. Ostareck, C. Cans et al., “c-Src-mediated phosphorylation of hnRNP K drives translational activation of specifically silenced mRNAs,” Molecular and Cellular Biology, vol. 22, no. 13, pp. 4535–4543, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. G. S. Goldberg, D. B. Alexander, P. Pellicena, Z. Y. Zhang, H. Tsuda, and W. T. Miller, “Src Phosphorylates Cas on Tyrosine 253 to Promote Migration of Transformed Cells,” Journal of Biological Chemistry, vol. 278, no. 47, pp. 46533–46540, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. B. W. Howell, T. M. Herrick, J. D. Hildebrand, Y. Zhang, and J. A. Cooper, “Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development,” Current Biology, vol. 10, no. 15, pp. 877–885, 2000. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Kato and S. Maeda, “Neuron-specific Cdk5 kinase is responsible for mitosis-independent phosphorylation of c-Src at Ser75 in human Y79 retinoblastoma cells,” Journal of Biochemistry, vol. 126, no. 5, pp. 957–961, 1999. View at Google Scholar · View at Scopus
  93. Z. Tiran, A. Peretz, B. Attali, and A. Elson, “Phosphorylation-dependent regulation of Kv2.1 Channel activity at tyrosine 124 by Src and by protein-tyrosine phosphatase ε,” Journal of Biological Chemistry, vol. 278, no. 19, pp. 17509–17514, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. G. H. Renkema, K. Pulkkinen, and K. Saksela, “Cdc42/Rac1-mediated activation primes PAK2 for superactivation by tyrosine phosphorylation,” Molecular and Cellular Biology, vol. 22, no. 19, pp. 6719–6725, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. Z. Zhang, G. Izaguirre, S. Y. Lin, H. Y. Lee, E. Schaefer, and B. Haimovich, “The phosphorylation of vinculin on tyrosine residues 100 and 1065, mediated by Src kinases, affects cell spreading,” Molecular Biology of the Cell, vol. 15, no. 9, pp. 4234–4247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. P. N. Garrison, A. K. Robinson, Y. Pekarsky, C. M. Croce, and L. D. Barnes, “Phosphorylation of the human Fhit tumor suppressor on tyrosine 114 in Escherichia coli and unexpected steady state kinetics of the phosphorylated forms,” Biochemistry, vol. 44, no. 16, pp. 6286–6292, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. W. Seok Yang, J. Lee, T. Woong Kim et al., “Src/NF-kappaB-targeted inhibition of LPS-induced macrophage activation and dextran sodium sulphate-induced colitis by Archidendron clypearia methanol extract,” Journal of Ethnopharmacology, vol. 142, no. 1, pp. 287–293, 2012. View at Publisher · View at Google Scholar
  98. Y. Yang, T. Yu, H. J. Jang et al., “In vitro and in vivo anti-inflammatory activities of Polygonum hydropiper methanol extract,” Journal of Ethnopharmacology, vol. 139, no. 2, pp. 616–625, 2012. View at Publisher · View at Google Scholar
  99. T. Yu, S. Lee, W. S. Yang et al., “The ability of an ethanol extract of Cinnamomum cassia to inhibit Src and spleen tyrosine kinase activity contributes to its anti-inflammatory action,” Journal of Ethnopharmacology, vol. 139, no. 2, pp. 566–573, 2012. View at Publisher · View at Google Scholar
  100. T. Yu, H. M. Ahn, T. Shen et al., “Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans,” Journal of Ethnopharmacology, vol. 137, no. 3, pp. 1197–1206, 2011. View at Publisher · View at Google Scholar
  101. T. Yu, Y. J. Lee, H. J. Jang et al., “Anti-inflammatory activity of Sorbus commixta water extract and its molecular inhibitory mechanism,” Journal of Ethnopharmacology, vol. 134, no. 2, pp. 493–500, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. T. Yu, Y. J. Lee, H. M. Yang et al., “Inhibitory effect of Sanguisorba officinalis ethanol extract on NO and PGE2 production is mediated by suppression of NF-κB and AP-1 activation signaling cascade,” Journal of Ethnopharmacology, vol. 134, no. 1, pp. 11–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. M. H. Kim, S. Y. Ryu, J. S. Choi, Y. K. Min, and S. H. Kim, “Saurolactam inhibits osteoclast differentiation and stimulates apoptosis of mature osteoclasts,” Journal of Cellular Physiology, vol. 221, no. 3, pp. 618–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Y. Kim, Y. G. Lee, M. Y. Kim et al., “Src-mediated regulation of inflammatory responses by actin polymerization,” Biochemical Pharmacology, vol. 79, no. 3, pp. 431–443, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. M. C. Maa, M. Y. Chang, M. Y. Hsieh et al., “Butyrate reduced lipopolysaccharide-mediated macrophage migration by suppression of Src enhancement and focal adhesion kinase activity,” Journal of Nutritional Biochemistry, vol. 21, no. 12, pp. 1186–1192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Y. Cho, D. S. Yoo, J. Lee et al., “A modulatory effect of novel kojic acid derivatives on cancer cell proliferation and macrophage activation,” Pharmazie, vol. 65, no. 4, pp. 261–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. C. Li, Z. Yang, Z. Li et al., “Maslinic acid suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by regulating RANKL-mediated NF-κB and MAPK signaling pathways,” Journal of Bone and Mineral Research, vol. 26, no. 3, pp. 644–656, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. H. S. Kim, K. S. Suh, D. Sul, B. J. Kim, S. K. Lee, and W. W. Jung, “The inhibitory effect and the molecular mechanism of glabridin on RANKL-induced osteoclastogenesis in RAW264.7 cells,” International Journal of Molecular Medicine, vol. 29, no. 2, pp. 169–177, 2012. View at Google Scholar
  109. D. Pinkaew, N. Hutadilok-Towatana, B. B. Teng, W. Mahabusarakam, and K. Fujise, “Morelloflavone, a biflavonoid inhibitor of migration-related kinases, ameliorates atherosclerosis in mice,” American Journal of Physiology, vol. 302, no. 2, pp. 451–458, 2012. View at Publisher · View at Google Scholar
  110. A. R. Kim, H. S. Kim, J. M. Lee et al., “Arctigenin suppresses receptor activator of nuclear factor kappaB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages,” European Journal of Pharmacology, vol. 682, no. 1–3, pp. 29–36, 2012. View at Publisher · View at Google Scholar
  111. R. Fumimoto, E. Sakai, Y. Yamaguchi et al., “The coffee diterpene kahweol prevents osteoclastogenesis via impairment of NFATc1 expression and blocking of Erk phosphorylation,” Journal of Pharmacological Sciences, vol. 118, no. 4, pp. 479–486, 2012. View at Publisher · View at Google Scholar
  112. M. P. Nelson, B. S. Christmann, J. L. Werner et al., “IL-33 and M2a alveolar macrophages promote lung defense against the atypical fungal pathogen Pneumocystis murina,” Journal of Immunology, vol. 186, no. 4, pp. 2372–2381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. H. S. Lee, C. Moon, H. W. Lee, E. M. Park, M. S. Cho, and J. L. Kang, “Src tyrosine kinases mediate activations of NF-κB and integrin signal during lipopolysaccharide-induced acute lung injury,” Journal of Immunology, vol. 179, no. 10, pp. 7001–7011, 2007. View at Google Scholar · View at Scopus
  114. M. K. Dahle, G. Øverland, A. E. Myhre et al., “The phosphatidylinositol 3-kinase/protein kinase B signaling pathway is activated by lipoteichoic acid and plays a role in Kupffer cell production of interleukin-6 (IL-6) and IL-10,” Infection and Immunity, vol. 72, no. 10, pp. 5704–5711, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. T. R. Billiar, R. D. Curran, M. A. West, K. Hofmann, and R. L. Simmons, “Kupffer cell cytotoxicity to hepatocytes in coculture requires L-arginine,” Archives of Surgery, vol. 124, no. 12, pp. 1416–1421, 1989. View at Google Scholar · View at Scopus
  116. J. F. Dhainaut, N. Marin, A. Mignon, C. Vinsonneau, and C. Sprung, “Hepatic response to sepsis: interaction between coagulation and inflammatory processes,” Critical Care Medicine, vol. 29, no. 7, pp. S42–S47, 2001. View at Google Scholar · View at Scopus
  117. D. Jarrar, I. H. Chaudry, and P. Wang, “Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches (Review).,” International journal of molecular medicine, vol. 4, no. 6, pp. 575–583, 1999. View at Google Scholar · View at Scopus
  118. D. J. Koo, I. H. Chaudry, and P. Wang, “Kupffer cells are responsible for producing inflammatory cytokines and hepatocellular dysfunction during early sepsis,” Journal of Surgical Research, vol. 83, no. 2, pp. 151–157, 1999. View at Publisher · View at Google Scholar · View at Scopus
  119. M. A. West, T. R. Billiar, R. D. Curran, B. J. Hyland, and R. L. Simmons, “Evidence that rat Kupffer cells stimulate and inhibit hepatocyte protein synthesis in vitro by different mechanisms,” Gastroenterology, vol. 96, no. 6, pp. 1572–1582, 1989. View at Google Scholar · View at Scopus
  120. T. R. Billiar and R. D. Curran, “Kupffer cell and hepatocyte interactions: a brief overview,” Journal of Parenteral and Enteral Nutrition, vol. 14, no. 5, 1990. View at Google Scholar · View at Scopus
  121. A. Jerin, N. Požar-Lukanovič, V. Sojar, D. Stanisavljevič, V. Paver-Eržen, and J. Osredkar, “Balance of pro- and anti-inflammatory cytokines in liver surgery,” Clinical Chemistry and Laboratory Medicine, vol. 41, no. 7, pp. 899–903, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. K. Emmanuilidis, H. Weighardt, S. Maier et al., “Critical role of Kupffer cell-derived IL-10 for host defense in septic peritonitis,” Journal of Immunology, vol. 167, no. 7, pp. 3919–3927, 2001. View at Google Scholar · View at Scopus
  123. M. Kato, N. Ikeda, E. Matsushita, S. Kaneko, and K. Kobayashi, “Involvement of IL-10, an anti-inflammatory cytokine in murine liver injury induced by Concanavalin A,” Hepatology Research, vol. 22, no. 2, pp. 232–243, 2001. View at Google Scholar · View at Scopus
  124. F. D. Lowy, “Medical progress: staphylococcus aureus infections,” New England Journal of Medicine, vol. 339, no. 8, pp. 520–532, 1998. View at Publisher · View at Google Scholar · View at Scopus
  125. P. J. O'Neill, A. Ayala, P. Wang et al., “Role of Kupffer cells in interleukin-6 release following trauma-hemorrhage and resuscitation.,” Shock, vol. 1, no. 1, pp. 43–47, 1994. View at Google Scholar · View at Scopus
  126. M. J. Richards, J. R. Edwards, D. H. Culver, and R. P. Gaynes, “Nosocomial infections in medical intensive care units in the United States,” Critical Care Medicine, vol. 27, no. 5, pp. 887–892, 1999. View at Publisher · View at Google Scholar · View at Scopus
  127. S. B. Yee, P. E. Ganey, and R. A. Roth, “The role of kupffer cells and TNF-α in monocrotaline and bacterial lipopolysaccharide-induced liver injury,” Toxicological Sciences, vol. 71, no. 1, pp. 124–132, 2003. View at Publisher · View at Google Scholar · View at Scopus
  128. H. Fan, G. Teti, S. Ashton et al., “Involvement of Gi proteins and Src tyrosine kinase in TNFα production induced by lipopolysaccharide, group B Streptococci and Staphylococcus aureus,” Cytokine, vol. 22, no. 5, pp. 126–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  129. R. Zheng, G. Pan, B. M. Thobe et al., “MyD88 and Src are differentially regulated in Kupffer cells of males and proestrus females following hypoxia,” Molecular Medicine, vol. 12, no. 4–6, pp. 65–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. B. M. Thobe, M. Frink, M. A. Choudhry, M. G. Schwacha, K. I. Bland, and I. H. Chaudry, “Src family kinases regulate p38 MAPK-mediated IL-6 production in Kupffer cells following hypoxia,” American Journal of Physiology, vol. 291, no. 3, pp. C476–C482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. J. R. Sunohara, N. D. Ridgway, H. W. Cook, and D. M. Byers, “Regulation of MARCKS and MARCKS-related protein expression in BV-2 microglial cells in response to lipopolysaccharide,” Journal of Neurochemistry, vol. 78, no. 3, pp. 664–672, 2001. View at Publisher · View at Google Scholar · View at Scopus
  132. G. W. Kreutzberg, “Microglia: a sensor for pathological events in the CNS,” Trends in Neurosciences, vol. 19, no. 8, pp. 312–318, 1996. View at Publisher · View at Google Scholar · View at Scopus
  133. F. González-Scarano and G. Baltuch, “Microglia as mediators of inflammatory and degenerative diseases,” Annual Review of Neuroscience, vol. 22, pp. 219–240, 1999. View at Publisher · View at Google Scholar · View at Scopus
  134. A. L. DeFranco, M. T. Crowley, A. Finn, J. Hambleton, and S. L. Weinstein, “The role of tyrosine kinases and map kinases in LPS-induced signaling.,” Progress in Clinical and Biological Research, vol. 397, pp. 119–136, 1998. View at Google Scholar · View at Scopus
  135. F. Meng and C. A. Lowell, “Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn,” Journal of Experimental Medicine, vol. 185, no. 9, pp. 1661–1670, 1997. View at Publisher · View at Google Scholar · View at Scopus
  136. J. Tan, T. Town, and M. Mullan, “CD45 inhibits CD40L-induced microglial activation via negative regulation of the Src/p44/42 MAPK pathway,” Journal of Biological Chemistry, vol. 275, no. 47, pp. 37224–37231, 2000. View at Publisher · View at Google Scholar · View at Scopus
  137. J. Tan, T. Town, M. Saxe, D. Paris, Y. Wu, and M. Mullan, “Ligation of microglial CD40 results in p44/42 mitogen-activated protein kinase-dependent TNF-α production that is opposed by TGF-β1 and IL-10,” Journal of Immunology, vol. 163, no. 12, pp. 6614–6621, 1999. View at Google Scholar · View at Scopus
  138. M. Chellaiah, N. Kizer, M. Silva, U. Alvarez, D. Kwiatkowski, and K. A. Hruska, “Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength,” Journal of Cell Biology, vol. 148, no. 4, pp. 665–678, 2000. View at Publisher · View at Google Scholar · View at Scopus
  139. R. Felix, W. Hofstetter, and M. G. Cecchini, “Recent developments in the understanding of the pathophysiology of osteopetrosis,” European Journal of Endocrinology, vol. 134, no. 2, pp. 143–156, 1996. View at Google Scholar · View at Scopus
  140. T. Miyazaki, S. Tanaka, A. Sanjay, and R. Baron, “The role of c-Src kinase in the regulation of osteoclast function,” Modern Rheumatology, vol. 16, no. 2, pp. 68–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. K. B. Kaplan, J. R. Swedlow, D. O. Morgan, and H. E. Varmus, “c-Src enhances the spreading of src-/- fibroblasts on fibronectin by a kinase-independent mechanism,” Genes and Development, vol. 9, no. 12, pp. 1505–1517, 1995. View at Google Scholar · View at Scopus
  142. F. Meng and C. A. Lowell, “A β1 integrin signaling pathway involving Src-family kinases, Cbl and PI-3 kinase is required for macrophage spreading and migration,” EMBO Journal, vol. 17, no. 15, pp. 4391–4403, 1998. View at Publisher · View at Google Scholar · View at Scopus
  143. D. P. Felsenfeld, P. L. Schwartzberg, A. Venegas, R. Tse, and M. P. Sheetz, “Selective regulation of integrin-cytoskeleton interactions by the tyrosine kinase Src,” Nature Cell Biology, vol. 1, no. 4, pp. 200–206, 1999. View at Google Scholar · View at Scopus
  144. T. Misteli, “The concept of self-organization in cellular architecture,” Journal of Cell Biology, vol. 155, no. 2, pp. 181–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  145. T. Miyazaki, H. Takayanagi, M. Isshiki et al., “In vitro and in vivo suppression of osteoclast function by adenovirus vector-induced csk gene,” Journal of Bone and Mineral Research, vol. 15, no. 1, pp. 41–51, 2000. View at Google Scholar · View at Scopus
  146. P. L. Schwartzberg, L. Xing, O. Hoffmann et al., “Rescue of osteoclast function by transgenic expression of kinase- deficient Src in src-/- mutant mice,” Genes and Development, vol. 11, no. 21, pp. 2835–2844, 1997. View at Google Scholar · View at Scopus
  147. S. F. Doisneau-Sixou, P. Cestac, S. Chouini et al., “Contrasting effects of prenyltransferase inhibitors on estrogen-dependent cell cycle progression and estrogen receptor-mediated transcriptional activity in MCF-7 cells,” Endocrinology, vol. 144, no. 3, pp. 989–998, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. W. G. Kim, C. J. Guigon, L. Fozzatti et al., “SKI-606, an Src inhibitor, reduces tumor growth, invasion, and distant metastasis in a mouse model of thyroid cancer,” Clinical Cancer Research, vol. 18, no. 5, pp. 1281–1290, 2012. View at Publisher · View at Google Scholar
  149. F. M. Johnson, B. Saigal, M. Talpaz, and N. J. Donato, “Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells,” Clinical Cancer Research, vol. 11, no. 19, pp. 6924–6932, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. Y. M. Chang, L. Bai, S. Liu, J. C. Yang, H. J. Kung, and C. P. Evans, “Src family kinase oncogenic potential and pathways in prostate cancer as revealed by AZD0530,” Oncogene, vol. 27, no. 49, pp. 6365–6375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. G. Martiny-Baron, P. Holzer, E. Billy et al., “The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis,” Angiogenesis, vol. 13, no. 3, pp. 259–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. A. Fallah-Tafti, A. Foroumadi, R. Tiwari et al., “Thiazolyl N-benzyl-substituted acetamide derivatives: synthesis, Src kinase inhibitory and anticancer activities,” European Journal of Medicinal Chemistry, vol. 46, no. 10, pp. 4853–4858, 2011. View at Publisher · View at Google Scholar
  153. Y. J. Kim, E. H. Kim, and K. B. Hahm, “Oxidative stress in inflammation-based gastrointestinal tract diseases: challenges and opportunities,” Journal of Gastroenterology and Hepatology, vol. 27, no. 6, pp. 1004–1010, 2012. View at Publisher · View at Google Scholar
  154. H. Zhu and Y.R. Li, “Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence,” Experimental Biology and Medicine, vol. 237, no. 5, pp. 474–480, 2012. View at Publisher · View at Google Scholar
  155. S. Tavakoli and R. Asmis, “Reactive oxygen species and thiol redox signaling in the macrophage biology of atherosclerosis,” Antioxidants & Redox Signaling, vol. 17, no. 12, pp. 1785–1795, 2012. View at Publisher · View at Google Scholar
  156. M.J. Surace and M.L. Block, “Targeting microglia-mediated neurotoxicity: the potential of NOX2 inhibitors,” Cellular and Molecular Life Sciences, vol. 69, no. 14, pp. 2409–2427, 2012. View at Publisher · View at Google Scholar
  157. I. T. Lee and C. M. Yang, “Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases,” Biochemical Pharmacology, vol. 84, no. 5, pp. 581–590, 2012. View at Publisher · View at Google Scholar
  158. Y. M. Go and D. P. Jones, “Cysteine/cystine redox signaling in cardiovascular disease,” Free Radical Biology and Medicine, vol. 50, no. 4, pp. 495–509, 2011. View at Publisher · View at Google Scholar · View at Scopus
  159. T. Senga, K. Miyazaki, K. Machida et al., “Clustered cysteine residues in the kinase domain of v-Src: critical role for protein stability, cell transformation and sensitivity to herbimycin A,” Oncogene, vol. 19, no. 2, pp. 273–279, 2000. View at Google Scholar · View at Scopus
  160. T. Senga, H. Hasegawa, M. Tanaka, M. A. Rahman, S. Ito, and M. Hamaguchi, “The cysteine-cluster motif of c-Src: its role for the heavy metal-mediated activation of kinase,” Cancer Science, vol. 29, no. 3, pp. 571–575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  161. J. M. Lluis, F. Buricchi, P. Chiarugi, A. Morales, and J. C. Fernandez-Checa, “Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-KB via c-SRC- and oxidant-dependent cell death,” Cancer Research, vol. 67, no. 15, pp. 7368–7377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  162. P. Chiarugi, “Src redox regulation: there is more than meets the eye,” Molecules and Cells, vol. 26, no. 4, pp. 329–337, 2008. View at Google Scholar · View at Scopus
  163. D. J. Kemble and G. Sun, “Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5070–5075, 2009. View at Publisher · View at Google Scholar · View at Scopus