Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012, Article ID 528568, 7 pages
http://dx.doi.org/10.1155/2012/528568
Research Article

Clarithromycin Suppresses Human Respiratory Syncytial Virus Infection-Induced Streptococcus pneumoniae Adhesion and Cytokine Production in a Pulmonary Epithelial Cell Line

1Departments of Microbiology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
2Department of Pediatrics, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
3Department of Otolaryngology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan

Received 17 January 2012; Revised 9 February 2012; Accepted 14 February 2012

Academic Editor: Kazuhito Asano

Copyright © 2012 Shin-ichi Yokota et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. B. Hall, G. A. Weinberg, M. K. Iwane et al., “The burden of respiratory syncytial virus infection in young children,” The New England Journal of Medicine, vol. 360, no. 6, pp. 588–598, 2009. View at Google Scholar · View at Scopus
  2. A. Greenough, “Respiratory syncytial virus infection: clinical features, management, and prophylaxis,” Current Opinion in Pulmonary Medicine, vol. 8, no. 3, pp. 214–217, 2002. View at Google Scholar · View at Scopus
  3. P. Liu, M. Jamaluddin, K. Li, R. P. Garofalo, A. Casola, and A. R. Brasier, “Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells,” Journal of Virology, vol. 81, no. 3, pp. 1401–1411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Okabayashi, T. Kojima, T. Masaki et al., “Type-III interferon, not type-I, is the predominant interferon induced by respiratory viruses in nasal epithelial cells,” Virus Research, vol. 160, no. 1-2, pp. 360–366, 2011. View at Publisher · View at Google Scholar
  5. M. Matsumoto and T. Seya, “TLR3: interferon induction by double-stranded RNA including poly(I:C),” Advanced Drug Delivery Reviews, vol. 60, no. 7, pp. 805–812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Onomoto, M. Yoneyama, and T. Fujita, “Regulation of antiviral innate immune responses by RIG-I family of RNA helicases,” Current Topics in Microbiology and Immunology, vol. 316, pp. 193–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Tsutsumi, R. Takeuchi, and S. Chiba, “Activation of cellular genes in the mucosal epithelium by respiratory syncytial virus: implications in disease and immunity,” Pediatric Infectious Disease Journal, vol. 20, no. 10, pp. 997–1001, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. P. E. Kim, D. M. Musher, W. P. Glezen, M. C. Rodriguez-Barradas, W. K. Nahm, and C. E. Wright, “Association of invasive pneumococcal disease with season, atmospheric conditions, air pollution, and the isolation of respiratory viruses,” Clinical Infectious Diseases, vol. 22, no. 1, pp. 100–106, 1996. View at Google Scholar · View at Scopus
  9. J. M. Hament, J. L. L. Kimpen, A. Fleer, and T. F. W. Wolfs, “Respiratory viral infection predisposing for bacterial disease: a concise review,” FEMS Immunology and Medical Microbiology, vol. 26, no. 3-4, pp. 189–195, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Chonmaitree and T. Heikkinen, “Viruses and acute otitis media,” Pediatric Infectious Disease Journal, vol. 19, no. 10, pp. 1005–1007, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Andrade, A. Hoberman, J. Glustein, J. L. Paradise, and E. R. Wald, “Acute otitis media in children with bronchiolitis,” Pediatrics, vol. 101, no. 4, pp. 617–619, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. D. R. Cundell, C. Gerard, I. Idanpaan-Heikkila, E. I. Tuomanen, and N. P. Gerard, “PAF receptor anchors Streptococcus pneumoniae to activated human endothelial cells,” Advances in Experimental Medicine and Biology, vol. 416, pp. 89–94, 1997. View at Google Scholar · View at Scopus
  13. D. R. Cundell, N. P. Gerard, C. Gerard, I. Idanpaan-Heikkila, and E. I. Tuomanen, “Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor,” Nature, vol. 377, no. 6548, pp. 435–438, 1995. View at Google Scholar · View at Scopus
  14. W. E. Swords, B. A. Buscher, K. Ver Steeg Li et al., “Non-typeable Haemophilus influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor,” Molecular Microbiology, vol. 37, no. 1, pp. 13–27, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Hament, P. C. Aerts, A. Fleer et al., “Enhanced adherence of Streptococcus pneumoniae to human epithelial cells infected with respiratory synctial virus,” Pediatric Research, vol. 55, no. 6, pp. 972–978, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Avadhanula, C. A. Rodriguez, J. P. De Vincenzo et al., “Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner,” Journal of Virology, vol. 80, no. 4, pp. 1629–1636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ishizuka, M. Yamaya, T. Suzuki et al., “Effects of rhinovirus infection on the adherence of Streptococcus pneumoniae to cultured human airway epithelial cells,” Journal of Infectious Diseases, vol. 188, no. 12, pp. 1928–1939, 2003. View at Google Scholar · View at Scopus
  18. S. Ishizuka, M. Yamaya, T. Suzuki et al., “Acid exposure stimulates the adherence of Streptococcus pneumoniae to cultured human airway epithelial cells: effects on platelet-activating factor receptor expression,” American Journal of Respiratory Cell and Molecular Biology, vol. 24, no. 4, pp. 459–468, 2001. View at Google Scholar · View at Scopus
  19. N. Keicho and S. Kudoh, “Diffuse panbronchiolitis: role of macrolides in therapy,” American Journal of Respiratory Medicine, vol. 1, no. 2, pp. 119–131, 2002. View at Google Scholar · View at Scopus
  20. J. Tamaoki, J. Kadota, and H. Takizawa, “Clinical implications of the immunomodulatory effects of macrolides,” The American Journal of Medicine, vol. 117, supplement 9, pp. 5S–11S, 2004. View at Google Scholar · View at Scopus
  21. Y. S. López-Boado and B. K. Rubin, “Macrolides as immunomodulatory medications for the therapy of chronic lung diseases,” Current Opinion in Pharmacology, vol. 8, no. 3, pp. 286–291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Ichiyama, M. Nishikawa, T. Yoshitomi et al., “Clarithromycin inhibits NF-κB activation in human peripheral blood mononuclear cells and pulmonary epithelial cells,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 1, pp. 44–47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Kikuchi, K. Hagiwara, Y. Honda et al., “Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-κB transcription factors,” Journal of Antimicrobial Chemotherapy, vol. 49, no. 5, pp. 745–755, 2002. View at Google Scholar · View at Scopus
  24. T. Miyanohara, M. Ushikai, S. Matsune, K. Ueno, S. Katahira, and Y. Kurono, “Effects of clarithromycin on cultured human nasal epithelial cells and fibroblasts,” Laryngoscope, vol. 110, no. 1, pp. 126–131, 2000. View at Google Scholar · View at Scopus
  25. T. Okabayashi, S. Yokota, Y. Yoto, H. Tsutsumi, and N. Fujii, “Fosfomycin suppresses chemokine induction in airway epithelial cells infected with respiratory syncytial virus,” Clinical and Vaccine Immunology, vol. 16, no. 6, pp. 859–865, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Yokota, T. Okabayashi, Y. Yoto, T. Hori, H. Tsutsumi, and N. Fujii, “Fosfomycin suppresses RS-virus-induced Streptococcus pneumoniae and Haemophilus influenzae adhesion to respiratory epithelial cells via the platelet-activating factor receptor,” FEMS Microbiology Letters, vol. 310, no. 1, pp. 84–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. H. Wang, S. H. Lee, H. J. Kwon, and Y. J. Jang, “Clarithromycin inhibits rhinovirus-induced bacterial adhesions to nasal epithelial cells,” Laryngoscope, vol. 120, no. 1, pp. 193–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Mutoh, S. Ishii, T. Izumi, S. Kato, and T. Shimizu, “Platelet-activating factor (PAF) positively auto-regulates the expression of human PAF receptor transcript 1 (leukocyte-type) through NF-κB,” Biochemical and Biophysical Research Communications, vol. 205, no. 2, pp. 1137–1142, 1994. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Shimizu and H. Mutoh, “Structure and regulation of platelet activating factor receptor gene,” Advances Experimental Medicine and Biology, vol. 416, pp. 197–204, 1997. View at Google Scholar
  30. T. Okabayashi, H. Kariwa, S. Yokota et al., “Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections,” Journal of Medical Virology, vol. 78, no. 4, pp. 417–424, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. K. B. Patel, D. Xuan, P. R. Tessier, J. H. Russomanno, R. Quintiliani, and C. H. Nightingale, “Comparison of bronchopulmonary pharmacokinetics of clarithromycin and azithromycin,” Antimicrobial Agents and Chemotherapy, vol. 40, no. 10, pp. 2375–2379, 1996. View at Google Scholar · View at Scopus
  32. M. Asada, M. Yoshida, T. Suzuki et al., “Macrolide antibiotics inhibit respiratory syncytial virus infection in human airway epithelial cells,” Antiviral Research, vol. 83, no. 2, pp. 191–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Suzuki, M. Yamaya, K. Sekizawa et al., “Erythromycin inhibits rhinovirus infection in cultured human tracheal epithelial cells,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 8, pp. 1113–1118, 2002. View at Google Scholar · View at Scopus
  34. Y. J. Jang, H. J. Kwon, and B. J. Lee, “Effect of clarithromycin on rhinovirus-16 infection in A549 cells,” European Respiratory Journal, vol. 27, no. 1, pp. 12–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Tsurita, M. Kurokawa, M. Imakita, Y. Fukuda, Y. Watanabe, and K. Shiraki, “Early augmentation of interleukin (IL)-12 level in the airway of mice administered orally with clarithromycin or intranasally with IL-12 results in alleviation of influenza infection,” Journal of Pharmacology and Experimental Therapeutics, vol. 298, no. 1, pp. 362–368, 2001. View at Google Scholar · View at Scopus
  36. F. J. Culley, A. M. J. Pennycook, J. S. Tregoning et al., “Role of CCL5 (RANTES) in viral lung disease,” Journal of Virology, vol. 80, no. 16, pp. 8151–8157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. S. Yoon, H. H. Kim, Y. Lee, and J. S. Lee, “Cytokine induction by respiratory syncytial virus and adenovirus in bronchial epithelial cells,” Pediatric Pulmonology, vol. 42, no. 3, pp. 277–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Venge, M. Lampinen, L. Håkansson, S. Rak, and P. Venge, “Identification of IL-5 and RANTES as the major eosinophil chemoattractants in the asthmatic lung,” Journal of Allergy and Clinical Immunology, vol. 97, no. 5, pp. 1110–1115, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. J. A. Mccullers, A. R. Iverson, and P. J. Murray, “The platelet activating factor receptor is not required for exacerbation of bacterial pneumonia following influenza,” Scandinavian Journal of Infectious Diseases, vol. 40, no. 1, pp. 11–17, 2008. View at Publisher · View at Google Scholar · View at Scopus