Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012 (2012), Article ID 584262, 17 pages
http://dx.doi.org/10.1155/2012/584262
Review Article

Pathogen- and Host-Directed Anti-Inflammatory Activities of Macrolide Antibiotics

1Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, P.O. Box 2034, Pretoria 0001, South Africa
2Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa

Received 1 February 2012; Accepted 2 March 2012

Academic Editor: Kazuhito Asano

Copyright © 2012 Helen C. Steel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Wikipedia, the free encyclopedia, Macrolide, 2011, http://en.wikipedia.org/wiki/Macrolide.
  2. J. M. Zuckerman, F. Qamar, and B. R. Bono, “Review of macrolides (azithromycin, clarithromycin), ketolides (telithromycin) and glycylcyclines (tigecycline),” Medical Clinics of North America, vol. 95, no. 4, pp. 761–791, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Foulds, R. M. Shepard, and R. B. Johnson, “The pharmacokinetics of azithromycin in human serum and tissues,” Journal of Antimicrobial Chemotherapy, vol. 25, supplement, pp. 73–82, 1990. View at Google Scholar · View at Scopus
  4. F. Fraschini, F. Scaglione, G. Pintucci, G. Maccarinelli, S. Dugnani, and G. Demartini, “The diffusion of clarithromycin and roxithromycin into nasal mucosa, tonsil and lung in humans,” Journal of Antimicrobial Chemotherapy, vol. 27, pp. 61–65, 1991. View at Google Scholar · View at Scopus
  5. J. M. Zuckerman, “Macrolides and ketolides: azithromycin, clarithromycin, telithromycin,” Infectious Disease Clinics of North America, vol. 18, no. 3, pp. 621–649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. G. L. Mandell, “Delivery of antibiotics by phagocytes,” Clinical Infectious Diseases, vol. 19, no. 5, pp. 922–925, 1994. View at Google Scholar · View at Scopus
  7. T. Tenson, M. Lovmar, and M. Ehrenberg, “The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome,” Journal of Molecular Biology, vol. 330, no. 5, pp. 1005–1014, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Kaiser, “Protein synthesis inhibitors: macrolides mechanism of action animation. Classification of agents Pharmamotion,” The Community College of Baltimore County, 2011, http://en.wikipedia.org/wiki/Protein_synthesis_inhibitor.
  9. H. M. Marriott, T. J. Mitchell, and D. H. Dockrell, “Pneumolysin: a double-edged sword during the host-pathogen interaction,” Current Molecular Medicine, vol. 8, no. 6, pp. 497–509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Tsujimoto, S. Ono, P. A. Efron, P. O. Scumpia, L. L. Moldawer, and H. Mochizuki, “Role of toll-like receptors in the development of sepsis,” Shock, vol. 29, no. 3, pp. 315–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Takeuchi and S. Akira, “Pattern recognition receptors and inflammation,” Cell, vol. 140, no. 6, pp. 805–820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. T. Kimmitt, C. R. Harwood, and M. R. Barer, “Induction of type 2 Shiga toxin synthesis in Escherichia coli 0157 by 4-quinolones,” The Lancet, vol. 353, no. 9164, pp. 1588–1589, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Murakami, K. Kishi, K. Hirai, K. Hiramatsu, T. Yamasaki, and M. Nasu, “Macrolides and clindamycin suppress the release of Shiga-like toxins from Escherichia coli O157:H7 in vitro,” International Journal of Antimicrobial Agents, vol. 15, no. 2, pp. 103–109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. C. S. Wong, S. Jelacic, R. L. Habeeb, S. L. Watkins, and P. I. Tarr, “The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections,” New England Journal of Medicine, vol. 342, no. 26, pp. 1930–1936, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. D. L. Stevens, Y. Ma, D. B. Salmi, E. McIndoo, R. J. Wallace, and A. E. Bryant, “Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus,” Journal of Infectious Diseases, vol. 195, no. 2, pp. 202–211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Dumitrescu, C. Badiou, M. Bes et al., “Effect of antibiotics, alone and in combination, on Panton-Valentine leukocidin production by a Staphylococcus aureus reference strain,” Clinical Microbiology and Infection, vol. 14, no. 4, pp. 384–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Serna IV and E. C. Boedeker, “Pathogenesis and treatment of Shiga toxin-producing Escherichia coli infections,” Current Opinion in Gastroenterology, vol. 24, no. 1, pp. 38–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. M. McGannon, C. A. Fuller, and A. A. Weiss, “Different classes of antibiotics differentially influence shiga toxin production,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 9, pp. 3790–3798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Spreer, H. Kerstan, T. Böttcher et al., “Reduced release of pneumolysin by Streptococcus pneumoniae in vitro and in vivo after treatment with nonbacteriolytic antibiotics in comparison to ceftriaxone,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 8, pp. 2649–2654, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Böttcher, H. Ren, M. Goiny et al., “Clindamycin is neuroprotective in experimental Streptococcus pneumoniae meningitis compared with ceftriaxone,” Journal of Neurochemistry, vol. 91, no. 6, pp. 1450–1460, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Karlström, K. L. Boyd, B. K. English, and J. A. McCullers, “Treatment with protein synthesis inhibitors improves outcomes of secondary bacterial pneumonia after influenza,” Journal of Infectious Diseases, vol. 199, no. 3, pp. 311–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Spreer, R. Lugert, V. Stoltefaut, A. Hoecht, H. Eiffert, and R. Nau, “Short-term rifampicin pretreatment reduces inflammation and neuronal cell death in a rabbit model of bacterial meningitis,” Critical Care Medicine, vol. 37, no. 7, pp. 2253–2258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Anderson, H. C. Steel, R. Cockeran et al., “Clarithromycin alone and in combination with ceftriaxone inhibits the production of pneumolysin by both macrolide-susceptible and macrolide-resistant strains of Streptococcus pneumoniae,” Journal of Antimicrobial Chemotherapy, vol. 59, no. 2, pp. 224–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Anderson, H. C. Steel, R. Cockeran et al., “Comparison of the effects of macrolides, amoxicillin, ceftriaxone, doxycycline, tobramycin and fluoroquinolones, on the production of pneumolysin by Streptococcus pneumoniae in vitro,” Journal of Antimicrobial Chemotherapy, vol. 60, no. 5, pp. 1155–1158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. A. Hirst, B. J. Mohammed, T. J. Mitchell, P. W. Andrew, and C. O'Callaghan, “Streptococcus pneumoniae-induced inhibition of rat ependymal cilia is attenuated by antipneumolysin antibody,” Infection and Immunity, vol. 72, no. 11, pp. 6694–6698, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Lagrou, W. E. Peetermans, M. Jorissen, J. Verhaegen, J. Van Damme, and J. Van Eldere, “Subinhibitory concentrations of erythromycin reduce pneumococcal adherence to respiratory epithelial cells in vitro,” Journal of Antimicrobial Chemotherapy, vol. 46, no. 5, pp. 717–723, 2000. View at Google Scholar · View at Scopus
  27. Y. Fukuda, K. Yanagihara, Y. Higashiyama et al., “Effects of macrolides on pneumolysin of macrolide-resistant Streptococcus pneumoniae,” European Respiratory Journal, vol. 27, no. 5, pp. 1020–1025, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Cockeran, H. C. Steel, N. Wolter et al., “Effects of clarithromycin at sub-minimum inhibitory concentrations on early ermB gene expression, metabolic activity and growth of an ermB-expressing, macrolide-resistant strain of Streptococcus pneumoniae,” Open Journal of Respiratory Diseases, vol. 2, pp. 1–8, 2012. View at Google Scholar
  29. Y. Yasuda, K. Kasahara, F. Mizuno, K. Nishi, K. Mikasa, and E. Kita, “Roxithromycin favorably modifies the initial phase of resistance against infection with macrolide-resistant Streptococcus pneumoniae in a murine pneumonia model,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 5, pp. 1741–1752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Nakamura, K. Yanagihara, N. Araki et al., “Efficacy of clarithromycin against experimentally induced pneumonia caused by clarithromycin-resistant Haemophilus influenzae in mice,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 2, pp. 757–762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Q. Bui, M. A. Banevicius, C. H. Nightingale, R. Quintiliani, and D. P. Nicolau, “In vitro and in vivo influence of adjunct clarithromycin on the treatment of mucoid Pseudomonas aeruginosa,” Journal of Antimicrobial Chemotherapy, vol. 45, no. 1, pp. 57–62, 2000. View at Google Scholar · View at Scopus
  32. G. Tanaka, M. Shigeta, H. Komatsuzawa, M. Sugai, H. Suginaka, and T. Usui, “Effect of clarithromycin on Pseudomonas aeruginosa biofilms,” Chemotherapy, vol. 46, no. 1, pp. 36–42, 2000. View at Google Scholar · View at Scopus
  33. K. Tateda, T. J. Standiford, J. C. Pechere, and K. Yamaguchi, “Regulatory effects of macrolides on bacterial virulence: potential role as quorum-sensing inhibitors,” Current Pharmaceutical Design, vol. 10, no. 25, pp. 3055–3065, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. D. J. Wozniak and R. Keyser, “Effects of subinhibitory concentrations of macrolide antibiotics on Pseudomonas aeruginosa,” Chest, vol. 125, no. 2, supplement 12, pp. 62S–69S, 2004. View at Google Scholar · View at Scopus
  35. L. Hall-Stoodley and P. Stoodley, “Evolving concepts in biofilm infections,” Cellular Microbiology, vol. 11, no. 7, pp. 1034–1043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Nalca, L. Jänsch, F. Bredenbruch, R. Geffers, J. Buer, and S. Häussler, “Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 5, pp. 1680–1688, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Bala, R. Kumar, and K. Harjai, “Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections,” Journal of Medical Microbiology, vol. 60, no. 3, pp. 300–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Cai, D. Chai, R. Wang, N. Bai, B. B. Liang, and Y. Liu, “Effectiveness and safety of macrolides in cystic fibrosis patients: a meta-analysis and systematic review,” Journal of Antimicrobial Chemotherapy, vol. 66, no. 5, pp. 968–978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Renna, C. Schaffner, K. Brown et al., “Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection,” Journal of Clinical Investigation, vol. 121, no. 9, pp. 3554–3563, 2011. View at Google Scholar
  40. K. Oishi, F. Sonoda, S. Kobayashi et al., “Role of interleukin-8 (IL-8) and an inhibitory effect of erythromycin on IL-8 release in the airways of patients with chronic airway diseases,” Infectious Immunology, vol. 62, no. 10, pp. 4145–4152, 1994. View at Google Scholar
  41. B. M. Vanaudenaerde, W. A. Wuyts, N. Geudens et al., “Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells,” American Journal of Transplantation, vol. 7, no. 1, pp. 76–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Brennan, D. Cooper, and P. D. Sly, “Directed neutrophil migration to IL-8 is increased in cystic fibrosis: a study of the effect of erythromycin,” Thorax, vol. 56, no. 1, pp. 62–64, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Yamaryo, K. Oishi, H. Yoshimine, Y. Tsuchihashi, K. Matsushima, and T. Nagatake, “Fourteen-member macrolides promote the phosphatidylserine receptor-dependent phagocytosis of apoptotic neutrophils by alveolar macrophages,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 1, pp. 48–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Hodge, G. Hodge, H. Jersmann et al., “Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 2, pp. 139–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Kita, M. Sawaki, F. Nishikawa et al., “Enhanced interleukin production after long-term administration of erythromycin stearate,” Pharmacology, vol. 41, no. 4, pp. 177–183, 1990. View at Google Scholar · View at Scopus
  46. A. Kamemoto, T. Ara, T. Hattori, Y. Fujinami, Y. Imamura, and P. L. Wang, “Macrolide antibiotics like azithromycin increase lipopolysaccharide-induced IL-8 production by human gingival fibroblasts,” European Journal of Medical Research, vol. 14, no. 7, pp. 309–314, 2009. View at Google Scholar · View at Scopus
  47. S. Bailly, J. J. Pocidalo, M. Fay, and M. A. Gougerot-Pocidalo, “Differential modulation of cytokine production by macrolides: interleukin-6 production is increased by spiramycin and erythromycin,” Antimicrobial Agents and Chemotherapy, vol. 35, no. 10, pp. 2016–2019, 1991. View at Google Scholar · View at Scopus
  48. S. I. Konno, M. Adachi, K. Asano, T. Kawazoe, K. I. Okamoto, and T. Takahashi, “Influences of roxithromycin on cell-mediated immune responses,” Life Sciences, vol. 51, no. 10, pp. PL107–PL112, 1992. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Suzaki, K. Asano, S. Ohki, K. Kanai, T. Mizutani, and T. Hisamitsu, “Suppressive activity of a macrolide antibiotic, roxithromycin, on pro- inflammatory cytokine production in vitro and in vivo,” Mediators of Inflammation, vol. 8, no. 4-5, pp. 199–204, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Yamasawa, K. Oshikawa, S. Ohno, and Y. Sugiyama, “Macrolides inhibit epithelial cell-mediated neutrophil survival by modulating granulocyte macrophage colony-stimulating factor release,” American Journal of Respiratory Cell and Molecular Biology, vol. 30, no. 4, pp. 569–575, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Bosnar, B. Bošnjak, S. Cužic et al., “Azithromycin and clarithromycin inhibit lipopolysaccharide-induced murine pulmonary neutrophilia mainly through effects on macrophage-derived granulocyte-macrophage colony-stimulating factor and interleukin-1 beta,” Journal of Pharmacology Experimental Therapy, vol. 331, no. 1, pp. 104–113, 2009. View at Google Scholar
  52. M. Meyer, F. Huaux, X. Gavilanes et al., “Azithromycin reduces exaggerated cytokine production by M1 alveolar macrophages in cystic fibrosis,” American Journal of Respiratory Cell and Molecular Biology, vol. 41, no. 5, pp. 590–602, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Abe, H. Nakamura, S. Inoue et al., “Interleukin-8 gene repression by clarithromycin is mediated by the activator protein-1 binding site in human bronchial epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 22, no. 1, pp. 51–60, 2000. View at Google Scholar · View at Scopus
  54. T. Kikuchi, K. Hagiwara, Y. Honda et al., “Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-κB transcription factors,” Journal of Antimicrobial Chemotherapy, vol. 49, no. 5, pp. 745–755, 2002. View at Google Scholar · View at Scopus
  55. M. Desaki, H. Okazaki, T. Sunazuka, S. Omura, K. Yamamoto, and H. Takizawa, “Molecular mechanisms of anti-inflammatory action of erythromycin in human bronchial epithelial cells: possible role in the signaling pathway that regulates nuclear factor-kappaB activation,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 5, pp. 1581–1585, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Shinkai, G. H. Foster, and B. K. Rubin, “Macrolide antibiotics modulate ERK phosphorylation and IL-8 and GM-CSF production by human bronchial epithelial cells,” American Journal of Physiology, vol. 290, no. 1, pp. L75–L85, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Shinkai, J. Tamaoki, H. Kobayashi et al., “Clarithromycin delays progression of bronchial epithelial cells from G 1 phase to S phase and delays cell growth via extracellular signal-regulated protein kinase suppression,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 5, pp. 1738–1744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Cigana, B. M. Assael, and P. Melotti, “Azithromycin selectively reduces tumor necrosis factor alpha levels in cystic fibrosis airway epithelial cells,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 3, pp. 975–981, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Bosnar, S. Čužić, B. Bošnjak et al., “Azithromycin inhibits macrophage interleukin-1β production through inhibition of activator protein-1 in lipopolysaccharide-induced murine pulmonary neutrophilia,” International Immunopharmacology, vol. 11, no. 4, pp. 424–434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Otsu, H. Ishinaga, S. Suzuki et al., “Effects of a novel nonantibiotic macrolide, EM900, on cytokine and mucin gene expression in a human airway epithelial cell line,” Pharmacology, vol. 88, no. 5-6, pp. 3272–332, 2009. View at Google Scholar
  61. E. Hoffmann, O. Dittrich-Breiholz, H. Holtmann, and M. Kracht, “Multiple control of interleukin-8 gene expression,” Journal of Leukocyte Biology, vol. 72, no. 5, pp. 847–855, 2002. View at Google Scholar · View at Scopus
  62. C. Cigana, E. Nicolis, M. Pasetto, B. M. Assael, and P. Melotti, “Anti-inflammatory effects of azithromycin in cystic fibrosis airway epithelial cells,” Biochemical and Biophysical Research Communications, vol. 350, no. 4, pp. 977–982, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Shinkai, M. O. Henke, and B. K. Rubin, “Macrolide antibiotics as immunomodulatory medications: proposed mechanisms of action,” Pharmacology and Therapeutics, vol. 117, no. 3, pp. 393–405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Ikegaya, K. Inai, H. Iwasaki, H. Naiki, and T. Ueda, “Azithromycin reduces tumor necrosis factor-alpha production in lipopolysaccharide-stimulated THP-1 monocytic cells by modification of stress response and p38 MAPK pathway,” Journal of Chemotherapy, vol. 21, no. 4, pp. 396–402, 2009. View at Google Scholar · View at Scopus
  65. K. Yamauchi, Y. Shibata, T. Kimura et al., “Azithromycin suppresses interleukin-12p40 expression in lipopolysaccharide and interferon-γ stimulated macrophages,” International Journal of Biological Sciences, vol. 5, no. 7, pp. 667–678, 2009. View at Google Scholar · View at Scopus
  66. G. Reato, A. M. Cuffini, V. Tullio et al., “Immunomodulating effect of antimicrobial agents on cytokine production by human polymorphonuclear neutrophils,” International Journal of Antimicrobial Agents, vol. 23, no. 2, pp. 150–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. M. J. Parnham, O. Culic, V. Erakovic et al., “Modulation of neutrophil and inflammation markers in chronic obstructive pulmonary disease by short-term azithromycin treatment,” European Journal of Pharmacology, vol. 517, no. 1-2, pp. 132–143, 2005. View at Google Scholar
  68. J. Tamaoki, J. Kadota, and H. Takizawa, “Clinical implications of the immunomodulatory effects of macrolides,” The American Journal of Medicine, vol. 117, supplement 9, pp. 5S–11S, 2004. View at Google Scholar · View at Scopus
  69. C. Feldman and R. Anderson, “The cytoprotective interactions of antibiotics with human ciliated airway epithelium,” in Antibiotics as Anti-Inflammatory and Immunomodulatory Agents, B. K. Rubin and J. Tamaoki, Eds., pp. 49–63, Birkhauser, Basel, Switzerland, 2005. View at Google Scholar
  70. H. Oda, J. I. Kadota, S. Kohno, and K. Hara, “Leukotriene B4 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis,” Chest, vol. 108, no. 1, pp. 116–122, 1995. View at Google Scholar · View at Scopus
  71. N. Hashimoto, T. Kawabe, T. Hara et al., “Effect of erythromycin on matrix metalloproteinase-9 and cell migration,” Journal of Laboratory and Clinical Medicine, vol. 137, no. 3, pp. 176–183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Kanai, K. Asano, T. Hisamitsu, and H. Suzaki, “Suppresion in matrix metalloproteinase production from nasal fibroblasts by macrolide antibiotics in vitro,” European Respiratory Journal, vol. 23, no. 5, pp. 671–678, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. K. I. Kanai, K. Asano, T. Hisamitsu, and H. Suzaki, “Suppression of matrix metalloproteinase-9 production from neutrophils by a macrolide antibiotic, roxithromycin, in vitro,” Mediators of Inflammation, vol. 13, no. 5-6, pp. 313–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Yasutomi, Y. Ohshima, N. Omata et al., “Erythromycin differentially inhibits lipopolysaccharide- or poly(I:C)-induced but not peptidoglycan-induced activation of human monocyte-derived dendritic cells,” Journal of Immunology, vol. 175, no. 12, pp. 8069–8076, 2005. View at Google Scholar · View at Scopus
  75. J. Y. Park, Y. H. Kim, Y. L. Ja et al., “Macrolide-affected Toll-like receptor 4 expression from Helicobacter pylori-infected monocytes does not modify interleukin-8 production,” FEMS Immunology and Medical Microbiology, vol. 44, no. 2, pp. 171–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Mitsuyama, T. Tanaka, K. Hidaka, M. Abe, and N. Hara, “Inhibition by erythromycin of superoxide anion production by human polymorphonuclear leukocytes through the action of cyclic AMP-dependent protein kinase,” Respiration, vol. 62, no. 5, pp. 269–273, 1995. View at Google Scholar · View at Scopus
  77. R. Anderson, A. J. Theron, and C. Feldman, “Membrane-stabilizing, anti-inflammatory interactions of macrolides with human neutrophils,” Inflammation, vol. 20, no. 6, pp. 693–705, 1996. View at Publisher · View at Google Scholar · View at Scopus
  78. J. P. Montenez, F. Van Bambeke, J. Piret, R. Brasseur, P. M. Tulkens, and M. P. Mingeot-Leclercq, “Interactions of macrolide antibiotics (erythromycin A, roxithromycin, erythromycylamine [dirithromycin], and azithromycin) with phospholipids: computer-aided conformational analysis and studies on acellular and cell culture models,” Toxicology and Applied Pharmacology, vol. 156, no. 2, pp. 129–140, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. V. Munić, M. Banjanac, S. Koštrun et al., “Intensity of macrolide anti-inflammatory activity in J774A.1 cells positively correlates with cellular accumulation and phospholipidosis,” Pharmacological Research, vol. 64, no. 3, pp. 298–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Tamaoki, M. Kondo, K. Kohri, K. Aoshiba, E. Tagaya, and A. Nagai, “Macrolide antibiotics protect against immune complex-induced lung injury in rats: role of nitric oxide from alveolar macrophages,” Journal of Immunology, vol. 163, no. 5, pp. 2909–2915, 1999. View at Google Scholar · View at Scopus
  81. K. Asano, K. Kamakazu, T. Hisamitsu, and H. Suzaki, “Suppressive activity of macrolide antibiotics on nitric oxide production from nasal polyp fibroblasts in vitro,” Acta Oto-Laryngologica, vol. 123, no. 9, pp. 1064–1069, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. R. Anderson, G. Tintinger, R. Cockeran, M. Potjo, and C. Feldman, “Beneficial and harmful interactions of antibiotics with microbial pathogens and the host innate immune system,” Pharmaceuticals, vol. 3, no. 5, pp. 1694–1710, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Takeyama, J. Tamaoki, A. Chiyotani, E. Tagaya, and K. Konno, “Effect of macrolide antibiotics on ciliary motility in rabbit airway epithelium in-vitro,” Journal of Pharmacy and Pharmacology, vol. 45, no. 8, pp. 756–758, 1993. View at Google Scholar · View at Scopus
  84. C. Feldman and R. Anderson, “Non-antimicrobial activity of macrolides: therapeutic potential in chronic inflammatory airway disorders,” South African Journal of Epidemiology Infections, vol. 24, no. 4, pp. 21–26, 2009. View at Google Scholar
  85. T. Shimizu, S. Shimizu, R. Hattori, E. C. Gabazza, and Y. Majima, “In vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells,” American Journal of Respiratory and Critical Care Medicine, vol. 168, no. 5, pp. 581–587, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. C. M. P. Ribeiro, H. Hurd, Y. Wu et al., “Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia,” PLoS ONE, vol. 4, no. 6, Article ID e5806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Tanabe, S. Kanoh, K. Tsushima et al., “Clarithromycin inhibits interleukin-13-induced goblet cell hyperplasia in human airway cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 5, pp. 1075–1083, 2011. View at Google Scholar
  88. Y. Imamura, K. Yanagihara, Y. Mizuta et al., “Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-oxododecanoyl) homoserine lactone in NCI-H292 cells,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 9, pp. 3457–3461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Feldman, R. Anderson, A. J. Theron, G. Ramafi, P. J. Cole, and R. Wilson, “Roxithromycin, clarithromycin, and azithromycin attenuate the injurious effects of bioactive phospholipids on human respiratory epithelium in vitro,” Inflammation, vol. 21, no. 6, pp. 655–665, 1997. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Wu, W. Zhang, L. Tian, K. Bao, P. Li, and J. Lin, “Immunomodulatory effects of erythromycin and its derivatives on human T-lymphocyte in vitro,” Immunopharmacology and Immunotoxicology, vol. 29, no. 3-4, pp. 587–596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. Ishida, Y. Abe, and Y. Harabuchi, “Effects of macrolides on antigen presentation and cytokine production by dendritic cells and T lymphocytes,” International Journal of Pediatric Otorhinolaryngology, vol. 71, no. 2, pp. 297–305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. Hiwatashi, M. Maeda, H. Fukushima et al., “Azithromycin suppresses proliferation, interleukin production and mitogen-activated protein kinases in human peripheral-blood mononuclear cells stimulated with bacterial superantigen,” Journal of Pharmacy and Pharmacology, vol. 63, no. 10, pp. 1320–1326, 2011. View at Google Scholar
  93. T. Noma, K. Aoki, M. Hayashi, I. Yoshizawa, and Y. Kawano, “Effect of roxithromycin on T lymphocyte proliferation and cytokine production elicited by mite antigen,” International Immunopharmacology, vol. 1, no. 2, pp. 201–210, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. A. L. Pukhalsky, G. V. Shmarina, N. I. Kapranov, S. N. Kokarovtseva, D. Pukhalskaya, and N. J. Kashirskaja, “Anti-inflammatory and immunomodulating effects of clarithromycin in patients with cystic fibrosis lung disease,” Mediators of Inflammation, vol. 13, no. 2, pp. 111–117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Asano, K. Kamakazu, T. Hisamitsu, and H. Suzaki, “Modulation of Th2 type cytokine production from human peripheral blood leukocytes by a macrolide antibiotic, roxithromycin, in vitro,” International Immunopharmacology, vol. 1, no. 11, pp. 1913–1921, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. A. C. Williams, H. F. Galley, A. M. Watt, and N. R. Webster, “Differential effects of three antibiotics on T helper cell cytokine expression,” Journal of Antimicrobial Chemotherapy, vol. 56, no. 3, pp. 502–506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. S. J. Park, Y. C. Lee, Y. K. Rhee, and H. B. Lee, “The effect of long-term treatment with erythromycin on Th1 and Th2 cytokines in diffuse panbronchiolitis,” Biochemical and Biophysical Research Communications, vol. 324, no. 1, pp. 114–117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. K. Morikawa, J. Zhang, M. Nonaka, and S. Morikawa, “Modulatory effect of macrolide antibiotics on the Th1- and Th2-type cytokine production,” International Journal of Antimicrobial Agents, vol. 19, no. 1, pp. 53–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. T. Ito, N. Ito, H. Hashizume, and M. Takigawa, “Roxithromycin inhibits chemokine-induced chemotaxis of Th1 and Th2 cells but regulatory T cells,” Journal of Dermatological Science, vol. 54, no. 3, pp. 185–191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. Ishimatsu, J. I. Kadota, T. Iwashita et al., “Macrolide antibiotics induce apoptosis of human peripheral lymphocytes in vitro,” International Journal of Antimicrobial Agents, vol. 24, no. 3, pp. 247–253, 2004. View at Google Scholar · View at Scopus
  101. S. Mizunoe, J. I. Kadota, I. Tokimatsu, K. Kishi, H. Nagai, and M. Nasu, “Clarithromycin and azithromycin induce apoptosis of activated lymphocytes via down-regulation of Bcl-xL,” International Immunopharmacology, vol. 4, no. 9, pp. 1201–1207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. J. I. Kadota, S. Mizunoe, K. Kishi, I. Tokimatsu, H. Nagai, and M. Nasu, “Antibiotic-induced apoptosis in human activated peripheral lymphocytes,” International Journal of Antimicrobial Agents, vol. 25, no. 3, pp. 216–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Asano, M. Suzuki, T. Shimane, and H. Suzaki, “Suppression of co-stimulatory molecule expressions on splenic B lymphocytes by a macrolide antibiotic, roxithromycin in vitro,” International Immunopharmacology, vol. 1, no. 7, pp. 1385–1392, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Aoki and P. N. Kao, “Erythromycin inhibits transcriptional activation of NF-κB, but not NFAT, through calcineurin-independent signaling in T cells,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 11, pp. 2678–2684, 1999. View at Google Scholar · View at Scopus
  105. S. Kanoh and B. K. Rubin, “Mechanisms of action and clinical application of macrolides as immunomodulatory medications,” Clinical Microbiology Reviews, vol. 23, no. 3, pp. 590–615, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. R. A. Fecik, P. L. Nguyen, and L. Venkatraman, “Approaches to the synthesis of immunolides: selective immunomodulatory macrolides for cystic fibrosis,” Current Opinion in Drug Discovery and Development, vol. 8, no. 6, pp. 741–747, 2005. View at Google Scholar · View at Scopus
  107. A. Mereu, E. Moriggi, M. Napoletano et al., “Design, synthesis and in vivo activity of 9-(S)-dihydroerythromycin derivatives as potent anti-inflammatory agents,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 22, pp. 5801–5804, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Sugawara, A. Sueki, T. Hirose et al., “Novel 12-membered non-antibiotic macrolides from erythromycin A; EM900 series as novel leads for anti-inflammatory and/or immunomodulatory agents,” Bioorganic & Medicinal Chemistry Letters, vol. 21, no. 11, pp. 3373–3376, 2011. View at Google Scholar
  109. M. H. Gotfried, “Macrolides for the treatment of chronic sinusitis, asthma, and COPD,” Chest, vol. 125, no. 2, supplement, pp. 52S–61S, 2004. View at Google Scholar · View at Scopus
  110. P. A. J. Crosbie and M. A. Woodhead, “Long-term macrolide therapy in chronic inflammatory airway diseases,” European Respiratory Journal, vol. 33, no. 1, pp. 171–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. A. L. Friedlander and R. K. Albert, “Chronic macrolide therapy in inflammatory airways diseases,” Chest, vol. 138, no. 5, pp. 1202–1212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. P. Zarogoulidis, N. Papanas, I. Kioumis, E. Chatzaki, E. Maltezos, and K. Zarogoulidis, “Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases,” European Journal of Clinical Pharmacology, vol. 68, no. 5, pp. 479–503, 2012. View at Google Scholar
  113. K. Tateda, Y. Ishii, S. Kimura, M. Horikawa, S. Miyairi, and K. Yamaguchi, “Suppression of Pseudomonas aeruginosa quorum-sensing systems by macrolides: a promising strategy or an oriental mystery?” Journal of Infection and Chemotherapy, vol. 13, no. 6, pp. 357–367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. E. J. Giamarellos-Bourboulis, “Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators,” International Journal of Antimicrobial Agents, vol. 31, no. 1, pp. 12–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Altenburg, C. S. de Graaff, T. S. van der Werf, and W. G. Boersma, “Immunomodulatory effects of macrolide antibiotics—part 2: advantages and disadvantages of long-term, low-dose macrolide therapy,” Respiration, vol. 81, no. 1, pp. 75–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. L. Guillot, O. Tabary, N. Nathan, H. Corvol, and A. Clement, “Macrolides: new therapeutic perspectives in lung diseases,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 9, pp. 1241–1246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. H. Nagai, H. Shishido, R. Yoneda, E. Yamaguchi, A. Tamura, and A. Kurashima, “Long-term low-dose administration of erythromycin to patients with diffuse panbronchiolitis,” Respiration, vol. 58, no. 3-4, pp. 145–149, 1991. View at Google Scholar · View at Scopus
  118. H. Kobayashi, N. Ohgaki, and H. Takeda, “Therapeutic possibilities for diffuse panbronchiolitis,” International Journal of Antimicrobial Agents, vol. 3, no. 1, pp. S81–S86, 1993. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Koyama and D. M. Geddes, “Erythromycin and diffuse panbronchiolitis,” Thorax, vol. 52, no. 10, pp. 915–918, 1997. View at Google Scholar · View at Scopus
  120. S. Kudoh, “Erythromycin treatment in diffuse panbronchiolitis,” Current Opinion in Pulmonary Medicine, vol. 4, no. 2, pp. 116–121, 1998. View at Google Scholar · View at Scopus
  121. S. Kudoh, A. Azuma, M. Yamamoto, T. Izumi, and M. Ando, “Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 6, pp. 1829–1832, 1998. View at Google Scholar · View at Scopus
  122. K. Yanagihara, J. Kadoto, and S. Kohno, “Diffuse panbronchiolitis—pathophysiology and treatment mechanisms,” International Journal of Antimicrobial Agents, vol. 18, no. 1, pp. S83–S87, 2001. View at Google Scholar · View at Scopus
  123. N. Keicho and S. Kudoh, “Diffuse panbronchiolitis: role of macrolides in therapy,” American Journal of Respiratory Medicine, vol. 1, no. 2, pp. 119–131, 2002. View at Google Scholar · View at Scopus
  124. J. Kadota, H. Mukae, H. Ishii et al., “Long-term efficacy and safety of clarithromycin treatment in patients with diffuse panbronchiolitis,” Respiratory Medicine, vol. 97, no. 7, pp. 844–850, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Kudoh, “Applying lessons learned in the treatment of diffuse panbronchiolitis to other chronic inflammatory diseases,” The American Journal of Medicine, vol. 117, supplement 9, pp. 12S–19S, 2004. View at Google Scholar · View at Scopus
  126. V. Poletti, M. Chilosi, G. Casoni, and T. V. Colby, “Diffuse panbronchiolitis,” Sarcoidosis Vasculitis and Diffuse Lung Diseases, vol. 21, no. 2, pp. 94–104, 2004. View at Google Scholar · View at Scopus
  127. M. J. Schultz, “Macrolide activities beyond their antimicrobial effects: macrolides in diffuse panbronchiolitis and crystic fibrosis,” Journal of Antimicrobial Chemotherapy, vol. 54, no. 1, pp. 21–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Azuma and S. Kudoh, “Diffuse panbronchiolitis in East Asia,” Respirology, vol. 11, no. 3, pp. 249–261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. V. Poletti, G. Casoni, M. Chilosi, and M. Zompatori, “Diffuse panbronchiolitis,” European Respiratory Journal, vol. 28, no. 4, pp. 862–871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Yang, B. R. Dong, J. Lu, X. Lin, and H. M. Wu, “Macrolides for diffuse panbronchiolitis,” Cochrane Database of Systematic Reviews (Online), vol. 12, Article ID CD007716, 2010. View at Google Scholar · View at Scopus
  131. A. Jaffè, “The anti-inflammatory effects of macrolides in cystic fibrosis,” Japanese Journal of Antibiotics, vol. 54, supplement, pp. 77–82, 2001. View at Google Scholar
  132. A. Equi, I. M. Balfour-Lynn, A. Bush, and M. Rosenthal, “Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial,” The Lancet, vol. 360, no. 9338, pp. 978–984, 2002. View at Publisher · View at Google Scholar · View at Scopus
  133. T. Nguyen, S. G. Louie, P. M. Beringer, and M. A. Gill, “Potential role of macrolide antibiotics in the management of cystic fibrosis lung disease,” Current Opinion in Pulmonary Medicine, vol. 8, no. 6, pp. 521–528, 2002. View at Publisher · View at Google Scholar · View at Scopus
  134. J. Wolter, S. Seeney, S. Bell, S. Bowler, P. Masel, and J. McCormack, “Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial,” Thorax, vol. 57, no. 3, pp. 212–216, 2002. View at Publisher · View at Google Scholar · View at Scopus
  135. J. M. Wolter, S. L. Seeney, and J. G. McCormack, “Macrolides in cystic fibrosis: is there a role?” American Journal of Respiratory Medicine, vol. 1, no. 4, pp. 235–241, 2002. View at Google Scholar · View at Scopus
  136. L. Saiman, B. C. Marshall, N. Mayer-Hamblett et al., “Azithromycin in patient with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial,” JAMA: Journal of the American Medical Association, vol. 290, no. 13, pp. 1749–1756, 2003. View at Google Scholar
  137. M. H. Schöni, “Macrolide antibiotic therapy in patients with cystic fibrosis,” Swiss Medical Weekly, vol. 133, no. 21-22, pp. 297–301, 2003. View at Google Scholar · View at Scopus
  138. B. K. Rubin and M. O. Henke, “Immunomodulatory activity and effectiveness of macrolides in chronic airway disease,” Chest, vol. 125, no. 2, supplement, pp. 70S–78S, 2004. View at Google Scholar · View at Scopus
  139. L. Saiman, “The use of macrolide antibiotics in patients with cystic fibrosis,” Current Opinion in Pulmonary Medicine, vol. 10, no. 6, pp. 515–523, 2004. View at Google Scholar · View at Scopus
  140. S. C. Bell, S. L. Senini, and J. G. McCormack, “Macrolides in cystic fibrosis,” Chronic Respiratory Disease, vol. 2, no. 2, pp. 85–98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. R. Dinwiddie, “Anti-inflammatory therapy in cystic fibrosis,” Journal of Cystic Fibrosis, vol. 4, no. 2, supplement, pp. 45–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. C. R. Hansen, T. Pressler, C. Koch, and N. Høiby, “Long-term azitromycin treatment of cystic fibrosis patients with chronic Pseudomonas aeruginosa infection; an observational cohort study,” Journal of Cystic Fibrosis, vol. 4, no. 1, pp. 35–40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. W. A. Prescott Jr. and G. E. Johnson, “Antiinflammatory therapies for cystic fibrosis: past, present, and future,” Pharmacotherapy, vol. 25, no. 4, pp. 555–573, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. A. Clement, A. Tamalet, E. Leroux, S. Ravilly, B. Fauroux, and J. P. Jais, “Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial,” Thorax, vol. 61, no. 10, pp. 895–902, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. J. R. McArdle and J. S. Talwalkar, “Macrolides in cystic fibrosis,” Clinics in Chest Medicine, vol. 28, no. 2, pp. 347–360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. J. McCormack, S. Bell, S. Senini et al., “Daily versus weekly azithromycin in cystic fibrosis patients,” European Respiratory Journal, vol. 30, no. 3, pp. 487–495, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. M. E. Skindersoe, M. Alhede, R. Phipps et al., “Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 10, pp. 3648–3663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. G. Steinkamp, S. Schmitt-Grohe, G. Döring et al., “Once-weekly azithromycin in cystic fibrosis with chronic Pseudomonas aeruginosa infection,” Respiratory Medicine, vol. 102, no. 11, pp. 1643–1653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. D. F. Florescu, P. J. Murphy, and A. C. Kalil, “Effects of prolonged use of azithromycin in patients with cystic fibrosis: a meta-analysis,” Pulmonology, Pharmacology and Therapy, vol. 22, no. 6, pp. 467–472, 2009. View at Google Scholar
  150. C. Winstanley and J. L. Fothergill, “The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections,” FEMS Microbiology Letters, vol. 290, no. 1, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. S. K. Kabra, R. Pawaiya, R. Lodha et al., “Long-term daily high and low doses of azithromycin in children with cystic fibrosis: a randomized controlled trial,” Journal of Cystic Fibrosis, vol. 9, no. 1, pp. 17–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. A. A. Yousef and A. Jaffe, “The role of azithromycin in patients with cystic fibrosis,” Paediatric Respiratory Reviews, vol. 11, no. 2, pp. 108–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. K. W. Southern, P. M. Barker, A. Solis-Moya, and L. Patel, “Macrolide antibiotics for cystic fibrosis,” Cochrane Database Systematic Reviews, vol. 12, Article ID CD002203, 2011. View at Google Scholar
  154. M. Mikami, “Clinical and pathophysiological significance of neutrophil elastase in sputum and the effect of erythromycin in chronic respiratory diseases,” Nihon Kyobu Shikkan Gakkai Zasshi, vol. 29, no. 1, pp. 72–83, 1991. View at Google Scholar
  155. N. Ohgaki, “Bacterial biofilm in chronic airway infection,” Kansenshogaku zasshi, vol. 68, no. 1, pp. 138–151, 1994. View at Google Scholar · View at Scopus
  156. K. W. T. Tsang, P. Roberts, R. C. Read, F. Kees, R. Wilson, and P. J. Cole, “The concentrations of clarithromycin and its 14-hydroxy metabolite in sputum of patients with bronchiectasis following single dose oral administration,” Journal of Antimicrobial Chemotherapy, vol. 33, no. 2, pp. 289–297, 1994. View at Google Scholar · View at Scopus
  157. P. J. Cole, “Bronchiectasis,” in Respiratory Medicine, R. A. L. Brewis, B. Corrin, D. M. Geddes, and G. J. Gibson, Eds., pp. 1286–1317, W. B. Saunders, London, UK, 2nd edition, 1995. View at Google Scholar
  158. Y. Y. Koh, M. H. Lee, Y. H. Sun, K. W. Sung, and J. H. Chae, “Effect of roxithromycin on airway responsiveness in children with bronchiectasis: a double-blind, placebo-controlled study,” European Respiratory Journal, vol. 10, no. 5, pp. 994–999, 1997. View at Google Scholar · View at Scopus
  159. H. Nakamura, S. Fujishima, T. Inoue et al., “Clinical and immunoregulatory effects of roxithromycin therapy for chronic respiratory tract infection,” European Respiratory Journal, vol. 13, no. 6, pp. 1371–1379, 1999. View at Publisher · View at Google Scholar · View at Scopus
  160. K. W. T. Tsang, P. I. Ho, K. N. Chan et al., “A pilot study of low-dose erythromycin in bronchiectasis,” European Respiratory Journal, vol. 13, no. 2, pp. 361–364, 1999. View at Publisher · View at Google Scholar · View at Scopus
  161. M. Gorrini, A. Lupi, S. Viglio et al., “Inhibition of human neutrophil elastase by erythromycin and flurythromycin, two macrolide antibiotics,” American Journal of Respiratory Cell and Molecular Biology, vol. 25, no. 4, pp. 492–499, 2001. View at Google Scholar · View at Scopus
  162. A. Jaff and A. Bush, “Anti-inflammatory effects of macrolides in lung disease,” Pediatric Pulmonology, vol. 31, no. 6, pp. 464–473, 2001. View at Publisher · View at Google Scholar · View at Scopus
  163. Y. Shibuya, P. J. Wills, and P. J. Cole, “The effect of erythromycin on mucociliary transportability and rheology of cystic fibrosis and bronchiectasis sputum,” Respiration, vol. 68, no. 6, pp. 615–619, 2001. View at Publisher · View at Google Scholar · View at Scopus
  164. E. Tagaya, J. Tamaoki, M. Kondo, and A. Nagai, “Effect of a short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion,” Chest, vol. 122, no. 1, pp. 213–218, 2002. View at Publisher · View at Google Scholar · View at Scopus
  165. A. Bush and B. K. Rubin, “Macrolides as biological response modifiers in cystic fibrosis and bronchiectasis,” Seminars in Respiratory and Critical Care Medicine, vol. 24, no. 6, pp. 737–747, 2003. View at Publisher · View at Google Scholar · View at Scopus
  166. G. Davies and R. Wilson, “Prophylactic antibiotic treatment of bronchiectasis with azithromycin,” Thorax, vol. 59, no. 6, pp. 540–541, 2004. View at Google Scholar · View at Scopus
  167. A. A. Cymbala, L. C. Edmonds, M. A. Bauer et al., “The disease-modifying effects of twice-weekly oral azithromycin in patients with bronchiectasis,” Treatments in Respiratory Medicine, vol. 4, no. 2, pp. 117–122, 2005. View at Publisher · View at Google Scholar · View at Scopus
  168. L. Máiz Carro, “Long-term treatment with azithromycin in a patient with idiopathic bronchiectasis,” Archivos de Bronconeumologia, vol. 41, no. 5, p. 295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  169. G. M. Verleden, L. J. Dupont, J. Vanhaecke, W. Daenen, and D. E. M. Van Raemdonck, “Effect of azithromycin on bronchiectasis and pulmonary function in a heart-lung transplant patient with severe chronic allograft dysfunction: a case report,” Journal of Heart and Lung Transplantation, vol. 24, no. 8, pp. 1155–1158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  170. E. Yalcin, N. Kiper, and U. Ozcelik, “Effects of clarithromycin on inflammatory parameters and clinical conditions in children with bronchiectasis,” Journal of Clinical Pharmacology and Therapeutics, vol. 31, no. 1, pp. 49–55, 2006. View at Google Scholar
  171. M. Vila-Justribo, J. Dorca-Sargatal, and S. Bello-Dronda, “Bronchiectasis and macrolides,” Archivos de Bronconeumologia, vol. 42, no. 4, p. 206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. P. King, “Is there a role for inhaled corticosteroids and macrolide therapy in bronchiectasis?” Drugs, vol. 67, no. 7, pp. 965–974, 2007. View at Publisher · View at Google Scholar · View at Scopus
  173. G. A. Anwar, S. C. Bourke, G. Afolabi, P. Middleton, C. Ward, and R. M. Rutherford, “Effects of long-term low-dose azithromycin in patients with non-CF bronchiectasis,” Respiratory Medicine, vol. 102, no. 10, pp. 1494–1496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  174. K. W. Tsang and D. Bilton, “Clinical challenges in managing bronchiectasis series,” Respirology, vol. 14, no. 5, pp. 637–650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  175. M. L. Metersky, “New treatment options for bronchiectasis,” Therapeutic Advances in Respiratory Disease, vol. 4, no. 2, pp. 93–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  176. M. Bochet, N. Garin, J. P. Janssens, and E. Gerstel, “Is there a role for prophylactic antibiotic treatment with macrolides in bronchiectasis?” Revue Medicale Suisse, vol. 7, no. 280, pp. 308–312, 2011. View at Google Scholar · View at Scopus
  177. D. J. Serisier and M. L. Martin, “Long-term, low-dose erythromycin in bronchiectasis subjects with frequent infective exacerbations,” Respiratory Medicine, vol. 105, no. 6, pp. 946–949, 2011. View at Publisher · View at Google Scholar · View at Scopus
  178. S. G. Gerhardt, J. F. McDyer, R. E. Girgis, J. V. Conte, S. C. Yang, and J. B. Orens, “Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study,” American Journal of Respiratory and Critical Care Medicine, vol. 168, no. 1, pp. 121–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  179. G. M. Verleden and L. J. Dupont, “Azithromycin therapy for patients with bronchiolitis obliterans syndrome after lung transplantation,” Transplantation, vol. 77, no. 9, pp. 1465–1467, 2004. View at Publisher · View at Google Scholar · View at Scopus
  180. S. Crowley and J. J. Egan, “Macrolide antibiotics and bronchiolitis obliterans following lung transplantation,” Expert Review of Anti-Infective Therapy, vol. 3, no. 6, pp. 923–930, 2005. View at Publisher · View at Google Scholar · View at Scopus
  181. B. Yates, D. M. Murphy, I. A. Forrest et al., “Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 6, pp. 772–775, 2005. View at Publisher · View at Google Scholar · View at Scopus
  182. A. M. Fietta and F. Meloni, “Lung transplantation: the role of azithromycin in the management of patients with bronchiolitis obliterans syndrome,” Current Medicinal Chemistry, vol. 15, no. 7, pp. 716–723, 2008. View at Publisher · View at Google Scholar · View at Scopus
  183. J. Gottlieb, J. Szangolies, T. Koehnlein, H. Golpon, A. Simon, and T. Welte, “Long-term azithromycin for bronchiolitis obliterans syndrome after lung transplantation,” Transplantation, vol. 85, no. 1, pp. 36–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  184. N. R. Porhownik, W. Batobara, W. Kepron, H. W. Unruh, and Z. Bshouty, “Effect of maintenance azithromycin on established bronchiolits obliterans syndrome in lung transplant patients,” Canadian Respiratory Journal, vol. 15, no. 4, pp. 199–202, 2008. View at Google Scholar · View at Scopus
  185. B. M. Vanaudenaerde, I. Meyts, R. Vos et al., “A dichotomy in bronchiolitis obliterans syndrome after lung transplantation revealed by azithromycin therapy,” European Respiratory Journal, vol. 32, no. 4, pp. 832–843, 2008. View at Publisher · View at Google Scholar · View at Scopus
  186. C. Benden and A. Boehler, “Long-term clarithromycin therapy in the management of lung transplant recipients,” Transplantation, vol. 87, no. 10, pp. 1538–1540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  187. N. Maimon, J. H. Lipton, C. K. N. Chan, and T. K. Marras, “Macrolides in the treatment of bronchiolitis obliterans in allograft recipients,” Bone Marrow Transplantation, vol. 44, no. 2, pp. 69–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  188. R. Jain, R. R. Hachem, M. R. Morrell et al., “Azithromycin is associated with increased survival in lung transplant recipients with bronchiolitis obliterans syndrome,” Journal of Heart and Lung Transplantation, vol. 29, no. 5, pp. 531–537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  189. R. Vos, B. M. Vanaudenaerde, A. Ottevaere et al., “Long-term azithromycin therapy for bronchiolitis obliterans syndrome: divide and conquer?” Journal of Heart and Lung Transplantation, vol. 29, no. 12, pp. 1358–1368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  190. A. J. Fisher, “Azithromycin and bronchiolitis obliterans syndrome after lung transplantation: is prevention better than cure?” European Respiratory Journal, vol. 37, no. 1, pp. 10–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  191. R. Vos, B. M. Vanaudenaerde, S. E. Verleden et al., “A randomised controlled trial of azithromycin to prevent chronic rejection after lung transplantation,” European Respiratory Journal, vol. 37, no. 1, pp. 164–172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  192. J. Tamaoki, K. Takeyama, E. Tagaya, and K. Konno, “Effect of clarithromycin on sputum production and its rheological properties in chronic respiratory tract infections,” Antimicrobial Agents and Chemotherapy, vol. 39, no. 8, pp. 1688–1690, 1995. View at Google Scholar · View at Scopus
  193. W. E. Swords and B. K. Rubin, “Macrolide antibiotics, bacterial populations and inflammatory airway disease,” The Netherlands Journal of Medicine, vol. 61, no. 7, pp. 242–248, 2003. View at Google Scholar
  194. D. Banerjee, D. Honeybourne, and O. A. Khair, “The effect of oral clarithromycin on bronchial airway inflammation in moderate-to-severe stable COPD: a randomized controlled trial,” Treatments in Respiratory Medicine, vol. 3, no. 1, pp. 59–65, 2004. View at Publisher · View at Google Scholar · View at Scopus
  195. I. Basyigit, F. Yildiz, S. K. Ozkara, E. Yildirim, H. Boyaci, and A. Ilgazli, “The effect of clarithromycin on inflammatory markers in chronic obstructive pulmonary disease: preliminary data,” Annals of Pharmacotherapy, vol. 38, no. 9, pp. 1400–1405, 2004. View at Publisher · View at Google Scholar · View at Scopus
  196. P. J. Barnes, “Mediators of chronic obstructive pulmonary disease,” Pharmacological Reviews, vol. 56, no. 4, pp. 515–548, 2004. View at Google Scholar
  197. D. Banerjee, O. A. Khair, and D. Honeybourne, “The effect of oral clarithromycin on health status and sputum bacteriology in stable COPD,” Respiratory Medicine, vol. 99, no. 2, pp. 208–215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  198. W. R. Bishai, “Macrolide immunomodulatory effects and symptom resolution in acute exacerbation of chronic bronchitis and acute maxillary sinusitis: a focus on clarithromycin,” Expert Review of Anti-Infective Therapy, vol. 4, no. 3, pp. 405–416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  199. D. M. Murphy, I. A. Forrest, D. Curran, and C. Ward, “Macrolide antibiotics and the airway: antibiotic or non-antibiotic effects?” Expert Opinion on Investigational Drugs, vol. 19, no. 3, pp. 401–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  200. H. Amayasu, S. Yoshida, S. Ebana et al., “Clarithromycin suppresses bronchial hyperresponsiveness associated with eosinophilic inflammation in patients with asthma,” Annals of Allergy, Asthma and Immunology, vol. 84, no. 6, pp. 594–598, 2000. View at Google Scholar · View at Scopus
  201. M. Cazzola, A. Salzillo, and F. Diamare, “Potential role of macrolides in the treatment of asthma,” Monaldi Archives for Chest Disease, vol. 55, no. 3, pp. 231–236, 2000. View at Google Scholar · View at Scopus
  202. A. Ekici, M. Ekici, and A. Kemal Erdemoǧlu, “Effect of azithromycin on the severity of bronchial hyperresponsiveness in patients with mild asthma,” Journal of Asthma, vol. 39, no. 2, pp. 181–185, 2002. View at Publisher · View at Google Scholar · View at Scopus
  203. D. A. Beuther and R. J. Martin, “Antibiotics in asthma,” Current Allergy and Asthma Reports, vol. 4, no. 2, pp. 132–138, 2004. View at Google Scholar · View at Scopus
  204. U. Hatipoǧlu and I. Rubinstein, “Low-dose, long-term macrolide therapy in asthma: an overview,” Clinical and Molecular Allergy, vol. 2, no. 1, article 4, 2004. View at Publisher · View at Google Scholar · View at Scopus
  205. E. Kostadima, S. Tsiodras, E. I. Alexopoulos et al., “Clarithromycin reduces the severity of bronchial hyperresponsiveness in patients with asthma,” European Respiratory Journal, vol. 23, no. 5, pp. 714–717, 2004. View at Publisher · View at Google Scholar · View at Scopus
  206. G. Ferrara, M. Losi, F. Franco, L. Corbetta, L. M. Fabbri, and L. Richeldi, “Macrolides in the treatment of asthma and cystic fibrosis,” Respiratory Medicine, vol. 99, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  207. L. Richeldi, G. Ferrara, L. M. Fabbri, T. J. Lasserson, and P. G. Gibson, “Macrolides for chronic asthma,” Cochrane Database of Systematic Reviews (Online), vol. 4, no. 3, Article ID CD002997, 2005. View at Google Scholar · View at Scopus
  208. L. Richeldi, G. Ferrara, L. M. Fabbri, T. J. Lasserson, and P. G. Gibson, “Macrolides for chronic asthma,” Cochrane Database of Systematic Reviews (Online), vol. 3, Article ID CD002997, 2005. View at Google Scholar · View at Scopus
  209. P. N. Black, “Antibiotics for the treatment of asthma,” Current Opinion in Pharmacology, vol. 7, no. 3, pp. 266–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  210. S. Sharma, A. Jaffe, and G. Dixon, “Immunomodulatory effects of macrolide antibiotics in respiratory disease: therapeutic implications for asthma and cystic fibrosis,” Pediatric Drugs, vol. 9, no. 2, pp. 107–118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  211. V. Hernando-Sastre, “Macrolide antibiotics in the treatment of asthma. An update,” Allergologia et Immunopathologia, vol. 38, no. 2, pp. 92–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  212. D. R. Rollins, D. A. Beuther, and R. J. Martin, “Update on infection and antibiotics in asthma,” Current Allergy and Asthma Reports, vol. 10, no. 1, pp. 67–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  213. R. Oliveinstein, H. A. Jahdali, N. Alkhamis, R. Halwani, S. Al-Muhsen, and Q. Hamid, “Challenges in the management of severe asthma: role of current and future therapies,” Current Pharmaceutical Design, vol. 17, no. 7, pp. 703–711, 2011. View at Publisher · View at Google Scholar · View at Scopus
  214. J. T. Good Jr., D. R. Rollins, and R. J. Martin, “Macrolides in the treatment of asthma,” Current Opinion in Pulmonary Medicine, vol. 18, no. 1, pp. 76–84, 2012. View at Google Scholar
  215. P. P. Gleason, T. P. Meehan, J. M. Fine, D. H. Galusha, and M. J. Fine, “Associations between initial antimicrobial therapy and medical outcomes for hospitalized elderly patients with pneumonia,” Archives of Internal Medicine, vol. 159, no. 21, pp. 2562–2572, 1999. View at Publisher · View at Google Scholar · View at Scopus
  216. G. W. Waterer, G. W. Somes, and R. G. Wunderink, “Monotherapy may be suboptimal for severe bacteremic pneumococcal pneumonia,” Archives of Internal Medicine, vol. 161, no. 15, pp. 1837–1842, 2001. View at Google Scholar · View at Scopus
  217. R. B. Brown, P. Iannini, P. Gross, and M. Kunkel, “Impact of initial antibiotic choice on clinical outcomes in community-acquired pneumonia: analysis of a hospital claims-made database,” Chest, vol. 123, no. 5, pp. 1503–1511, 2003. View at Publisher · View at Google Scholar · View at Scopus
  218. J. A. Martinez, J. P. Horcajada, M. Almela et al., “Addition of a macrolide to a beta-lactam-based empirical antibiotic regimen is associated with lower in-hospital mortality for patients with bacteremic pneumococcal pneumonia,” Clinical Infectious Diseases, vol. 36, no. 4, pp. 389–395, 2003. View at Google Scholar
  219. L. M. Baddour, V. L. Yu, K. P. Klugman et al., “Combination antibiotic therapy lowers mortality among severely ill patients with pneumococcal bacteremia,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 4, pp. 440–444, 2004. View at Google Scholar
  220. E. M. Mortensen, M. I. Restrepo, A. Anzueto, and J. Pugh, “The impact of empiric antimicrobial therapy with a β-lactam and fluoroquinolone on mortality for patients hospitalized with severe pneumonia,” Critical Care, vol. 10, no. 1, article R8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  221. M. L. Metersky, A. Ma, P. M. Houck, and D. W. Bratzler, “Antibiotics for bacteremic pneumonia: improved outcomes with macrolides but not fluoroquinolones,” Chest, vol. 131, no. 2, pp. 466–473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  222. A. Rodriguez, A. Mendia, J. M. Sirvent et al., “Combination antibiotic therapy improves survival in patients with community-acquired pneumonia and shock,” Critical Care Medicine, vol. 35, no. 6, pp. 1493–1498, 2007. View at Google Scholar
  223. C. Feldman and R. Anderson, “Therapy for pneumococcal bacteremia: monotherapy or combination therapy?” Current Opinion in Infectious Diseases, vol. 22, no. 2, pp. 137–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  224. M. I. Restrepo, E. M. Mortensen, G. W. Waterer, R. G. Wunderink, J. J. Coalson, and A. Anzueto, “Impact of macrolide therapy on mortality for patients with severe sepsis due to pneumonia,” European Respiratory Journal, vol. 33, no. 1, pp. 153–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  225. A. Tessmer, T. Welte, P. Martus, M. Schnoor, R. Marre, and N. Suttorp, “Impact of intravenous β-lactam/macrolide versus β-lactam monotherapy on mortality in hospitalized patients with community-acquired pneumonia,” Journal of Antimicrobial Chemotherapy, vol. 63, no. 5, pp. 1025–1033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  226. I. Martin-Loeches, T. Lisboa, A. Rodriguez et al., “Combination antibiotic therapy with macrolides improves survival in intubated patients with community-acquired pneumonia,” Intensive Care Medicine, vol. 36, no. 4, pp. 612–620, 2010. View at Publisher · View at Google Scholar · View at Scopus
  227. D. W. Bratzler, A. Ma, and W. Nsa, “Initial antibiotic selection and patient outcomes: observations from the National Pneumonia Project,” Clinical Infectious Diseases, vol. 47, pp. S193–201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  228. A. Torres, J. Garau, P. Arvis et al., “Moxifloxacin monotherapy is effective in hospitalized patients with community-acquired pneumonia: the MOTIV study—a randomized clinical trial,” Clinical Infectious Diseases, vol. 46, no. 10, pp. 1499–1509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  229. S. Ewig, H. Hecker, N. Suttorp, R. Marre, and T. Welte, “Moxifloxacin monotherapy versus β-lactam mono- or combination therapy in hospitalized patients with community-acquired pneumonia,” Journal of Infection, vol. 62, no. 3, pp. 218–225, 2011. View at Google Scholar
  230. B. J. Epstein and J. G. Gums, “Optimal pharmacological therapy for community-acquired pneumonia the role of dual antibacterial therapy,” Drugs, vol. 65, no. 14, pp. 1949–1971, 2005. View at Publisher · View at Google Scholar · View at Scopus
  231. E. J. Giamarellos-Bourboulis, J. C. Pechère, C. Routsi et al., “Effect of clarithromycin in patients with sepsis and ventilator-associated pneumonia,” Clinical Infectious Diseases, vol. 46, no. 8, pp. 1157–1164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  232. A. Kovaleva, H. H. F. Remmelts, G. T. Rijkers et al., “Immunomodulatory effects of macrolides during community-acquired pneumonia: a literature review,” Journal of Antimicrobial Chemotherapy, vol. 67, no. 3, pp. 5305–540, 2012. View at Google Scholar
  233. A. J. Walkey and R. S. Wiener, “Macrolide antibiotics and survival in patients with acute lung injury,” Chest, vol. 141, no. 5, pp. 1153–1159, 2012. View at Google Scholar
  234. A. Cervin, “The anti-inflammatory effect of erythromycin and its derivatives, with special reference to nasal polyposis and chronic sinusitis,” Acta Oto-Laryngologica, vol. 121, no. 1, pp. 83–92, 2001. View at Publisher · View at Google Scholar · View at Scopus
  235. H. Suzuki and K. Ikeda, “Mode of action of long-term low-dose macrolide therapy for chronic sinusitis in the light of neutrophil recruitment,” Current Drug Targets—Inflammation & Allergy, vol. 1, no. 1, pp. 117–126, 2002. View at Google Scholar · View at Scopus
  236. K. W. Garey, A. Alwani, L. H. Danziger, and I. Rubinstein, “Tissue reparative effects of macrolide antibiotics in chronic inflammatory sinopulmonary diseases,” Chest, vol. 123, no. 1, pp. 261–265, 2003. View at Publisher · View at Google Scholar · View at Scopus
  237. Y. Majima, “Clinical implications of the immunomodulatory effects of macrolides on sinusitis,” The American Journal of Medicine, vol. 117, supplement 9, pp. 20S–25S, 2004. View at Google Scholar · View at Scopus
  238. A. Cervin and B. Wallwork, “Anti-inflammatory effects of macrolide antibiotics in the treatment of chronic rhinosinusitis,” Otolaryngologic Clinics of North America, vol. 38, no. 6, pp. 1339–1350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  239. U. Hatipoglu and I. Rubinstein, “Treatment of chronic rhinosinusitis with low-dose, long-term macrolide antibiotics: an evolving paradigm,” Current Allergy and Asthma Reports, vol. 5, no. 6, pp. 491–494, 2005. View at Google Scholar · View at Scopus
  240. B. Wallwork, W. Coman, A. Mackay-Sim, L. Greiff, and A. Cervin, “A double-blind, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis,” Laryngoscope, vol. 116, no. 2, pp. 189–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  241. A. Cervin and B. Wallwork, “Macrolide therapy of chronic rhinosinusitis,” Rhinology, vol. 45, no. 4, pp. 259–267, 2007. View at Google Scholar · View at Scopus
  242. R. J. Harvey, B. D. Wallwork, and V. J. Lund, “Anti-inflammatory effects of macrolides: applications in chronic rhinosinusitis,” Immunology and Allergy Clinics of North America, vol. 29, no. 4, pp. 689–703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  243. E. O. Meltzer and D. L. Hamilos, “Rhinosinusitis diagnosis and management for the clinician: a synopsis of recent consensus guidelines,” Mayo Clinic Proceedings, vol. 86, no. 5, pp. 427–443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  244. P. Piromchai, S. Thanaviratananich, and M. Laopaiboon, “Systemic antibiotics for chronic rhinosinusitis without nasal polyps in adults,” Cochrane Database of Systematic Reviews (Online), vol. 5, Article ID CD008233, 2011. View at Google Scholar · View at Scopus