Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012 (2012), Article ID 874149, 6 pages
http://dx.doi.org/10.1155/2012/874149
Research Article

Microalbuminuria and sRAGE in High-Risk Hypertensive Patients Treated with Nifedipine/Telmisartan Combination Treatment: A Substudy of TALENT

1Interdepartmental Center of Research in Molecular Medicine (CIRMC), University of Pavia, 27100 Pavia, Italy
2Department of Cardiology, Istituto di Cura Città di Pavia, University Hospital, 27100 Pavia, Italy
3Department of Nephrology, IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
4Scientific Relations, Medical Department, Bayer S.p.A-Pharmaceutical, 20156 Milan, Italy
5Department of Clinical Medicine and Prevention, University of Milano-Bicocca, 20126 Milan, Italy

Received 14 September 2011; Revised 15 November 2011; Accepted 24 November 2011

Academic Editor: Fabrizio Montecucco

Copyright © 2012 Colomba Falcone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Ross, “Atherosclerosis-an inflammatory disease,” The New England Journal of Medicine, vol. 340, pp. 115–126, 1999. View at Google Scholar
  2. C. U. Chae, R. T. Lee, N. Rifai, and P. M. Ridker, “Blood pressure and inflammation in apparently healthy men,” Hypertension, vol. 38, no. 3, pp. 399–403, 2001. View at Google Scholar · View at Scopus
  3. J. T. Parissis, S. Korovesis, E. Giazitzoglou, P. Kalivas, and D. Katritsis, “Plasma profiles of peripheral monocyte-related inflammatory markers in patients with arterial hypertension. Correlations with plasma endothelin-1,” International Journal of Cardiology, vol. 83, no. 1, pp. 13–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. A. G. Pockley, U. De Faire, R. Kiessling, C. Lemne, T. Thulin, and J. Frostegård, “Circulating heat shock protein and heat shock protein antibody levels in established hypertension,” Journal of Hypertension, vol. 20, no. 9, pp. 1815–1820, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. H. M. Perry Jr., J. P. Miller, J. R. Fornoff et al., “Early predictors of 15-year end-stage renal disease in hypertensive patients,” Hypertension, vol. 25, no. 4, pp. 587–594, 1995. View at Google Scholar · View at Scopus
  6. M. J. Klag, P. K. Whelton, B. L. Randall et al., “Blood pressure and end-stage renal disease in men,” The New England Journal of Medicine, vol. 334, no. 1, pp. 13–18, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. T. B. Drüeke and Z. A. Massy, “Atherosclerosis in CKD: differences from the general population,” Nature Reviews Nephrology, vol. 6, pp. 723–735, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Di Napoli and F. Papa, “Angiotensin-converting enzyme inhibitor use is associated with reduced plasma concentration of C-reactive protein in patients with first-ever ischemic stroke,” Stroke, vol. 34, no. 12, pp. 2922–2929, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Mizuno, R. F. Jacob, and R. P. Mason, “Effects of calcium channel and renin-angiotensin system blockade on intravascular and neurohormonal mechanisms of hypertensive vascular disease,” American Journal of Hypertension, vol. 21, no. 10, pp. 1076–1085, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ruiz-Ortega, O. Lorenzo, M. Ruperez, and J. Egido, “ACE inhibitors and AT1 receptor antagonists—beyond the haemodynamic effect,” Nephrology Dialysis Transplantation, vol. 15, no. 5, pp. 561–565, 2000. View at Google Scholar · View at Scopus
  11. J. M. Forbes, S. R. Thorpe, V. Thallas-Bonke et al., “Modulation of soluble receptor for advanced glycation end products by angiotensin-converting enzyme-1 inhibition in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 16, no. 8, pp. 2363–2372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Brett, A. M. Schmidt, Shi Du Yan et al., “Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues,” American Journal of Pathology, vol. 143, no. 6, pp. 1699–1712, 1993. View at Google Scholar · View at Scopus
  13. A. M. Schmidt, M. Vianna, M. Gerlach et al., “Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface,” Journal of Biological Chemistry, vol. 267, no. 21, pp. 14987–14997, 1992. View at Google Scholar · View at Scopus
  14. G. Basta, A. M. Schmidt, and R. De Caterina, “Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes,” Cardiovascular Research, vol. 63, no. 4, pp. 582–592, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. B. Lindsey, F. Cipollone, S. M. Abdullah, and D. K. McGuire, “Receptor for advanced glycation end-products (RAGE) and soluble RAGE (sRAGE): cardiovascular implications,” Diabetes and Vascular Disease Research, vol. 6, no. 1, pp. 7–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Malherbe, J. G. Richards, H. Gaillard et al., “cDNA cloning of a novel secreted isoform of the human receptor for advanced glycation end products and characterization of cells co-expressing cell-surface scavenger receptors and Swedish mutant amyloid precursor protein,” Molecular Brain Research, vol. 71, no. 2, pp. 159–170, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Falcone, E. Emanuele, A. D'Angelo et al., “Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 5, pp. 1032–1037, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Koyama, T. Shoji, H. Yokoyama et al., “Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 12, pp. 2587–2593, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Basta, A. M. Sironi, G. Lazzerini et al., “Circulating soluble receptor for advanced glycation end products is inversely associated with glycemic control and S100A12 protein,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 11, pp. 4628–4634, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. P. M. Humpert, S. Kopf, Z. Djuric et al., “Plasma sRAGE is independently associated with urinary albumin excretion in type 2 diabetes,” Diabetes Care, vol. 29, no. 5, pp. 1111–1113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Lanati, E. Emanuele, N. Brondino, and D. Geroldi, “Soluble RAGE-modulating drugs: state-of-the-art and future perspectives for targeting vascular inflammation,” Current Vascular Pharmacology, vol. 8, no. 1, pp. 86–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Mancia, G. Parati, G. Bilo, J. Choi, M. O. Kilama, and L. M. Ruilope, “Blood pressure control by the nifedipine GITS-telmisartan combination in patients at high cardiovascular risk: The TALENT Study,” Journal of Hypertension, vol. 29, no. 3, pp. 600–609, 2011. View at Publisher · View at Google Scholar
  23. A. S. Levey, R. L. Berg, J. J. Gassman et al., “Creatinine filtration, secretion and excretion during progressive renal disease. Modification of Diet in Renal Disease (MDRD) Study Group,” Kidney International, vol. 27, pp. S73–S80, 1989. View at Google Scholar
  24. “Atlas of chronic kidney disease and end stage renal disease in the United States. United States Renal Data System [online],” 2010, http://www.usrds.org/.
  25. N. S. Anavekar, J. J. V. McMurray, E. J. Velazquez et al., “Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction,” The New England Journal of Medicine, vol. 351, no. 13, pp. 1285–1295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. C. Thomas, J. Soderlund, M. Lehto et al., “Soluble receptor for AGE (RAGE) is a novel independent predictor of all-cause and cardiovascular mortality in type 1 diabetes,” Diabetologia, vol. 54, no. 10, pp. 2669–2677, 2011. View at Google Scholar
  27. T. Matsui, S. Yamagishi, S. Ueda et al., “Telmisartan, an angiotensin II type 1 receptor blocker, inhibits advanced glycation end-product (AGE)-induced monocyte chemoattractant protein-1 expression in mesangial cells through downregulation of receptor for AGEs via peroxisome proliferator-activated receptor-γ, activation,” Journal of International Medical Research, vol. 35, no. 4, pp. 482–489, 2007. View at Google Scholar · View at Scopus
  28. S. I. Yamagishi, K. Nakamura, and T. Matsui, “Role of oxidative stress in the development of vascular injury and its therapeutic intervention by nifedipine,” Current Medicinal Chemistry, vol. 15, no. 2, pp. 172–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Matsui, S. I. Yamagishi, M. Takeuchi, S. Ueda, K. Fukami, and S. Okuda, “Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation,” Biochemical and Biophysical Research Communications, vol. 385, no. 2, pp. 269–272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Park, K. G. Raman, K. J. Lee et al., “Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts,” Nature Medicine, vol. 4, no. 9, pp. 1025–1031, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Basi and J. B. Lewis, “Microalbuminuria as a target to improve cardiovascular and renal outcomes,” American Journal of Kidney Diseases, vol. 47, no. 6, pp. 927–946, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Y. Yu, X. F. An, J. S. Liu et al., “Plasma sRAGE is not associated with urinary microalbumin excretion in type 2 diabetic nephropathy at the early stage,” Diabetes Research and Clinical Practice, vol. 87, no. 2, pp. 157–160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Kaňková, M. Kalousová, M. Hertlová, D. Krusová, J. Olšovský, and T. Zima, “Soluble RAGE, diabetic nephropathy and genetic variability in the AGER gene,” Archives of Physiology and Biochemistry, vol. 114, no. 2, pp. 111–119, 2008. View at Publisher · View at Google Scholar
  34. G. Basta, D. Leonardis, F. Mallamaci et al., “Circulating soluble receptor of advanced glycation end product inversely correlates with atherosclerosis in patients with chronic kidney disease,” Kidney International, vol. 77, no. 3, pp. 225–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Ogihara, K. Nakao, T. Fukui et al., “Effects of candesartan compared with amlodipine in hypertensive patients with high cardiovascular risks: candesartan antihypertensive survival evaluation in Japan trial,” Hypertension, vol. 51, no. 2, pp. 393–398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Saruta, K. Hayashi, T. Ogihara, K. Nakao, T. Fukui, and K. Fukiyama, “Effects of candesartan and amlodipine on cardiovascular events in hypertensive patients with chronic kidney disease: Subanalysis of the CASE-J Study,” Hypertension Research, vol. 32, no. 6, pp. 505–512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Matsuoka, “STONE study and INSIGHT study: efficacy of nifedipine in the prevention of cardiovascular disease in hypertensive patients,” Drugs, vol. 66, pp. 13–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Nakamura, E. Sato, N. Fujiwara et al., “Calcium channel blocker inhibition of AGE and RAGE axis limits renal injury in nondiabetic patients with stage i or II chronic kidney disease,” Clinical Cardiology, vol. 34, no. 6, pp. 372–377, 2011. View at Publisher · View at Google Scholar