Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013 (2013), Article ID 137629, 18 pages
http://dx.doi.org/10.1155/2013/137629
Research Article

Genes Related to Mitochondrial Functions, Protein Degradation, and Chromatin Folding Are Differentially Expressed in Lymphomonocytes of Rett Syndrome Patients

1Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
2Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
3National Research Institute on Food and Nutrition (INRAN), 00178 Rome, Italy
4Department of Life Science and Biotechnologies, University of Ferrara, 44121 Ferrara, Italy
5Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
6Neonatal Intensive Care Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
7Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea

Received 11 October 2013; Accepted 7 November 2013

Academic Editor: Paul Ashwood

Copyright © 2013 Alessandra Pecorelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Rett, “On a unusual brain atrophy syndrome in hyperammonemia in childhood,” Wiener Medizinische Wochenschrift, vol. 116, no. 37, pp. 723–726, 1966. View at Google Scholar · View at Scopus
  2. B. Hagberg, “Rett's syndrome: prevalence and impact on progressive severe mental retardation in girls,” Acta Paediatrica Scandinavica, vol. 74, no. 3, pp. 405–408, 1985. View at Google Scholar · View at Scopus
  3. C. L. Laurvick, N. de Klerk, C. Bower et al., “Rett syndrome in Australia: a review of the epidemiology,” Journal of Pediatrics, vol. 148, no. 3, pp. 347–352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. L. Neul, W. E. Kaufmann, D. G. Glaze et al., “Rett syndrome: revised diagnostic criteria and nomenclature,” Annals of Neurology, vol. 68, no. 6, pp. 944–950, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Neul, “The relationship of Rett syndrome and MECP2 disorders to autism,” Dialogues in Clinical Neuroscience, vol. 14, no. 3, pp. 253–262, 2012. View at Google Scholar
  6. A. Bebbington, A. Anderson, D. Ravine et al., “Investigating genotype-phenotype relationships in Rett syndrome using an international data set,” Neurology, vol. 70, no. 11, pp. 868–875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. L. Neul, P. Fang, J. Barrish et al., “Specific mutations in Methyl-CpG-Binding Protein 2 confer different severity in Rett syndrome,” Neurology, vol. 70, no. 16, pp. 1313–1321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. E. Amir, I. B. Van Den Veyver, M. Wan, C. Q. Tran, U. Francke, and H. Y. Zoghbi, “Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2,” Nature Genetics, vol. 23, no. 2, pp. 185–188, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Chahrour and H. Y. Zoghbi, “The story of Rett syndrome: from clinic to neurobiology,” Neuron, vol. 56, no. 3, pp. 422–437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. N. L. Adkins and P. T. Georgel, “MeCP2: structure and function,” Biochemistry and Cell Biology, vol. 89, no. 1, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Guy, H. Cheval, J. Selfridge, and A. Bird, “The role of MeCP2 in the brain,” Annual Review of Cell and Developmental Biology, vol. 27, pp. 631–652, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Colantuoni, O.-H. Jeon, K. Hyder et al., “Gene expression profiling in postmortem Rett Syndrome brain: differential gene expression and patient classification,” Neurobiology of Disease, vol. 8, no. 5, pp. 847–865, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Nectoux, Y. Fichou, H. Rosas-Vargas et al., “Cell cloning-based transcriptome analysis in Rett patients: relevance to the pathogenesis of Rett syndrome of new human MeCP2 target genes,” Journal of Cellular and Molecular Medicine, vol. 14, no. 7, pp. 1962–1974, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Traynor, P. Agarwal, L. Lazzeroni, and U. Francke, “Gene expression patterns vary in clonal cell cultures from Rett syndrome females with eight different MECP2 mutations,” BMC Medical Genetics, vol. 3, article 12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Ballestar, S. Ropero, M. Alaminos et al., “The impact of MECP2 mutations in the expression patterns of Rett syndrome patients,” Human Genetics, vol. 116, no. 1-2, pp. 91–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. I. J. Delgado, D. S. Kim, K. N. Thatcher, J. M. LaSalle, and I. B. Van den Veyver, “Expression profiling of clonal lymphocyte cell cultures from Rett syndrome patients,” BMC Medical Genetics, vol. 7, article 61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Yakabe, H. Soejima, H. Yatsuki et al., “MeCP2 knockdown reveals DNA methylation-independent gene repression of target genes in living cells and a bias in the cellular location of target gene products,” Genes and Genetic Systems, vol. 83, no. 2, pp. 199–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. H. Yasui, H. Xu, K. W. Dunaway, J. M. Lasalle, L. W. Jin, and I. Maezawa, “MeCP2 modulates gene expression pathways in astrocytes,” Molecular Autism, vol. 4, no. 1, p. 3, 2013. View at Google Scholar
  19. G. Dennis Jr., B. T. Sherman, D. A. Hosack et al., “DAVID: database for annotation, visualization, and integrated discovery,” Genome Biology, vol. 4, no. 5, p. P3, 2003. View at Google Scholar · View at Scopus
  20. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society, vol. 57, no. 1, pp. 289–300, 1995. View at Google Scholar
  21. F. Cervellati, G. Valacchi, L. Lunghi et al., “17-β-estradiol counteracts the effects of high frequency electromagnetic fields on trophoblastic connexins and integrins,” Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 280850, 11 pages, 2013. View at Publisher · View at Google Scholar
  22. C. De Felice, L. Ciccoli, S. Leoncini et al., “Systemic oxidative stress in classic Rett syndrome,” Free Radical Biology and Medicine, vol. 47, no. 4, pp. 440–448, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Pecorelli, L. Ciccoli, C. Signorini et al., “Increased levels of 4HNE-protein plasma adducts in Rett syndrome,” Clinical Biochemistry, vol. 44, no. 5-6, pp. 368–371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Sticozzi, G. Belmonte, and A. Pecorelli, “Scavenger receptor B1 post-translational modifications in Rett syndrome,” FEBS Letters, vol. 587, no. 14, pp. 2199–2204, 2013. View at Google Scholar
  25. L. Iommarini, M. A. Calvaruso, I. Kurelac, G. Gasparre, and A. M. Porcelli, “Complex I impairment in mitochondrial diseases and cancer: parallel roads leading to different outcomes,” The International Journal of Biochemistry & Cell Biology, vol. 45, no. 1, pp. 47–63, 2013. View at Google Scholar
  26. R. Stefanatos and A. Sanz, “Mitochondrial complex I: a central regulator of the aging process,” Cell Cycle, vol. 10, no. 10, pp. 1528–1532, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. D. N. Hauser and T. G. Hastings, “Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism,” Neurobiology of Disease, vol. 51, pp. 35–42, 2013. View at Google Scholar
  28. U. N. Das, “Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids,” Nutrition, vol. 29, no. 10, pp. 1175–1185, 2013. View at Google Scholar
  29. T. Clark-Taylor and B. E. Clark-Taylor, “Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial β-oxidation by long chain acyl-CoA dehydrogenase,” Medical Hypotheses, vol. 62, no. 6, pp. 970–975, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Kriaucionis, A. Paterson, J. Curtis, J. Guy, N. MacLeod, and A. Bird, “Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome,” Molecular and Cellular Biology, vol. 26, no. 13, pp. 5033–5042, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Battisti, P. Formichi, S. A. Tripodi et al., “Lymphoblastoid cell lines of Rett syndrome patients exposed to oxidative-stress-induced apoptosis,” Brain and Development, vol. 26, no. 6, pp. 384–388, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Anvret, Z. P. Zhang, and B. Hagberg, “Rett syndrome: the bcl-2 gene—a mediator of neurotrophic mechanisms?” Neuropediatrics, vol. 25, no. 6, pp. 323–324, 1994. View at Google Scholar · View at Scopus
  33. M. Sánchez-Aragó, L. Formentini, I. Martínez-Reyes et al., “Expression, regulation and clinical relevance of the ATPase inhibitory factor 1 in human cancers,” Oncogenesis, vol. 2, article e46, 2013. View at Google Scholar
  34. V. Saywell, A. Viola, S. Confort-Gouny, Y. Le Fur, L. Villard, and P. J. Cozzone, “Brain magnetic resonance study of Mecp2 deletion effects on anatomy and metabolism,” Biochemical and Biophysical Research Communications, vol. 340, no. 3, pp. 776–783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. H. A. Heilstedt, M. D. Shahbazian, and B. Lee, “Infantile hypotonia as a presentation of Rett syndrome,” American Journal of Medical Genetics, vol. 111, no. 3, pp. 238–242, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Ruch, T. W. Kurczynski, and M. E. Velasco, “Mitochondrial alterations in Rett syndrome,” Pediatric Neurology, vol. 5, no. 5, pp. 320–323, 1989. View at Google Scholar · View at Scopus
  37. M. T. Dotti, L. Manneschi, A. Malandrini, N. De Stefano, F. Caznerale, and A. Federico, “Mitochondrial dysfunction in Rett syndrome. An ultrastructural and biochemical study,” Brain and Development, vol. 15, no. 2, pp. 103–106, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. S. B. Coker and A. R. Melnyk, “Rett syndrome and mitochondrial enzyme deficiencies,” Journal of Child Neurology, vol. 6, no. 2, pp. 164–166, 1991. View at Google Scholar · View at Scopus
  39. T. Matsuishi, F. Urabe, A. K. Percy et al., “Abnormal carbohydrate metabolism in cerebrospinal fluid in Rett syndrome,” Journal of Child Neurology, vol. 9, no. 1, pp. 26–30, 1994. View at Google Scholar · View at Scopus
  40. R. H. Haas, M. Light, M. Rice, and B. A. Barshop, “Oxidative metabolism in Rett syndrome—1. Clinical studies,” Neuropediatrics, vol. 26, no. 2, pp. 90–94, 1995. View at Google Scholar · View at Scopus
  41. A. A. Al-Jarallah, M. A. M. Salih, M. N. Al Nasser, F. A. Al Zamil, and J. Al Gethmi, “Rett syndrome in Saudi Arabia: report of six patients,” Annals of Tropical Paediatrics, vol. 16, no. 4, pp. 347–352, 1996. View at Google Scholar · View at Scopus
  42. D. D. Armstrong, “Neuropathology of Rett syndrome,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 8, no. 2, pp. 72–76, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. O. Eeg-Olofsson, A. G. H. Al-Zuhair, A. S. Teebi, and M. M. N. Al-Essa, “Abnormal mitochondria in the Rett syndrome,” Brain and Development, vol. 10, no. 4, pp. 260–262, 1988. View at Google Scholar · View at Scopus
  44. O. Eeg-Olofsson, A. G. H. Al-Zuhair, A. S. Teebi, and M. M. N. Al-Essa, “Rett syndrome: genetic clues based on mitochondrial changes in muscle,” American Journal of Medical Genetics, vol. 32, no. 1, pp. 142–144, 1989. View at Google Scholar · View at Scopus
  45. O. Eeg-Olofsson, A. G. H. Al-Zuhair, A. S. Teebi et al., “Rett syndrome: a mitochondrial disease?” Journal of Child Neurology, vol. 5, no. 3, pp. 210–214, 1990. View at Google Scholar · View at Scopus
  46. S. Wakai, K. Kameda, Y. Ishikawa et al., “Rett syndrome: findings suggesting axonopathy and mitochondrial abnormalities,” Pediatric Neurology, vol. 6, no. 5, pp. 339–343, 1990. View at Publisher · View at Google Scholar · View at Scopus
  47. S.-C. Mak, C.-S. Chi, C.-H. Chen, and W.-J. Shian, “Abnormal mitochondria in Rett syndrome: one case report,” Chinese Medical Journal, vol. 52, no. 2, pp. 116–119, 1993. View at Google Scholar · View at Scopus
  48. M. E. Cornford, M. Philippart, B. Jacobs, A. B. Scheibel, and H. V. Vinters, “Neuropathology of Rett syndrome: case report with neuronal and mitochondrial abnormalities in the brain,” Journal of Child Neurology, vol. 9, no. 4, pp. 424–431, 1994. View at Google Scholar · View at Scopus
  49. S. Naidu, S. Hyman, E. L. Harris, V. Narayanan, D. Johns, and F. Castora, “Rett syndrome studies of natural history and search for a genetic marker,” Neuropediatrics, vol. 26, no. 2, pp. 63–66, 1995. View at Google Scholar · View at Scopus
  50. J. Tang, Y. Qi, X.-H. Bao, and X.-R. Wu, “Mutational analysis of mitochondrial DNA of children with Rett syndrome,” Pediatric Neurology, vol. 17, no. 4, pp. 327–330, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Ellaway and J. Christodoulou, “Rett syndrome: clinical update and review of recent genetic advances,” Journal of Paediatrics and Child Health, vol. 35, no. 5, pp. 419–426, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Oi, X. Wu, J. Tang, and X. Bao, “Computerized ribosomal RNA secondary structure modeling of mutants found in Rett syndrome patients and their mothers,” Chinese Journal of Medical Genetics, vol. 16, no. 3, pp. 153–155, 1999. View at Google Scholar · View at Scopus
  53. J. Armstrong, M. Pineda, and E. Monrós, “Mutation analysis of 16S rRNA in patients with rett syndrome,” Pediatric Neurology, vol. 23, no. 1, pp. 85–87, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Meng, H. Pan, and Y. Qi, “Role of mitochondrial lesion in pathogenesis of sporadic rett syndrome,” Zhonghua yi xue za zhi, vol. 81, no. 11, pp. 662–664, 2001. View at Google Scholar · View at Scopus
  55. J. H. Gibson, B. Slobedman, H. KN et al., “Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain,” BMC Neuroscience, vol. 11, article 53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. M. D. Brand, “The sites and topology of mitochondrial superoxide production,” Experimental Gerontology, vol. 45, no. 7-8, pp. 466–472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Dröse and U. Brandt, “Molecular mechanisms of superoxide production by the mitochondrial respiratory chain,” Advances in Experimental Medicine and Biology, vol. 748, pp. 145–169, 2012. View at Google Scholar
  58. S. Ahmad, D. Niegowski, A. Wetterholm, J. Z. Haeggström, R. Morgenstern, and A. Rinaldo-Matthis, “Catalytic characterization of human microsomal glutathione s-transferase 2: identification of rate-limiting steps,” Biochemistry, vol. 52, no. 10, pp. 1755–1764, 2013. View at Google Scholar
  59. G. Poli, R. J. Schaur, W. G. Siems, and G. Leonarduzzi, “4-Hydroxynonenal: a membrane lipid oxidation product of medicinal interest,” Medicinal Research Reviews, vol. 28, no. 4, pp. 569–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Makedonski, L. Abuhatzira, Y. Kaufman, A. Razin, and R. Shemer, “MeCP2 deficiency in Rett syndrome causes epigenetic aberrations at the PWS/AS imprinting center that affects UBE3A expression,” Human Molecular Genetics, vol. 14, no. 8, pp. 1049–1058, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Lawson-Yuen, D. Liu, L. Han et al., “Ube3a mRNA and protein expression are not decreased in Mecp2R168X mutant mice,” Brain Research, vol. 1180, no. 1, pp. 1–6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. G. P. Delcuve, M. Rastegar, and J. R. Davie, “Epigenetic control,” Journal of Cellular Physiology, vol. 219, no. 2, pp. 243–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. J. C. Rice and C. D. Allis, “Histone methylation versus histone acetylation: new insights into epigenetic regulation,” Current Opinion in Cell Biology, vol. 13, no. 3, pp. 263–273, 2001. View at Publisher · View at Google Scholar · View at Scopus