Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 182132, 8 pages
http://dx.doi.org/10.1155/2013/182132
Research Article

3,5,4′-tri-O-acetylresveratrol Ameliorates Seawater Exposure-Induced Lung Injury by Upregulating Connexin 43 Expression in Lung

1Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
2Department of Pharmacy, Tangdu hospital, Fourth Military Medical University, Xi’an 710038, China
3Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China

Received 14 November 2012; Accepted 31 January 2013

Academic Editor: Gustavo Duarte Pimentel

Copyright © 2013 Lijie Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. F. van Beeck, C. M. Branche, D. Szpilman, J. H. Modell, and J. J. Bierens, “A new definition of drowning: towards documentation and prevention of a global public health problem,” Bulletin of the World Health Organization, vol. 83, no. 11, pp. 853–856, 2005. View at Google Scholar · View at Scopus
  2. J. Li, M. Xu, X. Xie et al., “Tanshinone IIA suppresses lung injury and apoptosis, and modulates protein kinase B and extracellular signal-regulated protein kinase pathways in rats challenged with seawater exposure,” Clinical and Experimental Pharmacology and Physiology, vol. 38, no. 4, pp. 269–277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Zhang, W. Wang, J. Sun et al., “Gap junction channel modulates pulmonary vascular permeability through calcium in acute lung injury: an experimental study,” Respiration, vol. 80, no. 3, pp. 236–245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Meşe, G. Richard, and T. W. White, “Gap junctions: basic structure and function,” Journal of Investigative Dermatology, vol. 127, no. 11, pp. 2516–2524, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. K. Elzarrad, A. Haroon, K. Willecke, R. Dobrowolski, M. N. Gillespie, and A. Al-Mehdi, “Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium,” BMC Medicine, vol. 6, article 20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. E. L. Scheckenbach, S. Crespin, B. R. Kwak, and M. Chanson, “Connexin channel-dependent signaling pathways in inflammation,” Journal of Vascular Research, vol. 48, no. 2, pp. 91–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Koide, S. Osman, A. L. Garner et al., “The use of 3, 5, 4′-tri-o-acetylresveratrol as a potential pro-drug for resveratrol protects mice from gamma-irradiation-induced death,” ACS Medicinal Chemistry Letters, vol. 2, pp. 270–274, 2011. View at Google Scholar
  8. E. Fragopoulou, T. Nomikos, H. C. Karantonis et al., “Biological activity of acetylated phenolic compounds,” Journal of Agricultural and Food Chemistry, vol. 55, no. 1, pp. 80–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Li, The study of pharmacokinetics of 3, 5, 4′-tri-o-acetylresveratrol and resveratrol in SD rats, The Fourth Military Medical University, Xi'an, China, 2011.
  10. C. L. Sprung, D. Annane, D. Keh et al., “Hydrocortisone therapy for patients with septic shock,” The New England Journal of Medicine, vol. 358, no. 2, pp. 111–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. R. Neves, M. Lucio, J. L. Lima, and S. Reis, “Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions,” Current Medicinal Chemistry, vol. 19, no. 11, pp. 1663–1681, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Walle, F. Hsieh, M. H. DeLegge, J. E. Oatis Jr., and U. K. Walle, “High absorption but very low bioavailability of oral resveratrol in humans,” Drug Metabolism and Disposition, vol. 32, no. 12, pp. 1377–1382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Brun-Buisson, C. Minelli, G. Bertolini et al., “Epidemiology and outcome of acute lung injury in European intensive care units. Results from the ALIVE study,” Intensive Care Medicine, vol. 30, pp. 51–61, 2004. View at Publisher · View at Google Scholar
  14. L. Gregorakos, N. Markou, V. Psalida et al., “Near-drowning: clinical course of lung injury in adults,” Lung, vol. 187, no. 2, pp. 93–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Zhang, B. Zhang, D. Xu et al., “Tanshinone IIA attenuates seawater aspiration-induced lung injury by inhibiting macrophage migration inhibitory factor,” Biological and Pharmaceutical Bulletin, vol. 34, no. 7, pp. 1052–1057, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Li, M. Xu, Q. Fan et al., “Tanshinone IIA ameliorates seawater exposure-induced lung injury by inhibiting aquaporins (AQP) 1 and AQP5 expression in lung,” Respiratory Physiology and Neurobiology, vol. 176, no. 1-2, pp. 39–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. K. E. L. Scheckenbach, S. Crespin, B. R. Kwak, and M. Chanson, “Connexin channel-dependent signaling pathways in inflammation,” Journal of Vascular Research, vol. 48, no. 2, pp. 91–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. M. Ecklund, G. Wahl, A. V. Yamshchikov, and M. S. Smith, “Journey of a survivor of near drowning, polymicrobial pneumonia, and acute respiratory distress syndrome,” Critical Care Nursing Clinics of North America, vol. 24, pp. 601–623, 2012. View at Google Scholar
  19. A. Mann and G. L. Early, “Acute respiratory distress syndrome,” Missouri Medical, vol. 109, pp. 371–375, 2012. View at Google Scholar
  20. Q. Li, J. Zhang, W. Wang et al., “Connexin40 modulates pulmonary permeability through gap junction channel in acute lung injury after thoracic gunshot wounds,” Journal of Trauma, vol. 68, no. 4, pp. 802–809, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. R. Brink, V. Valiunas, H. Wang, W. Zhao, K. Davies, and G. J. Christ, “Experimental diabetes alters connexin43 derived gap junction permeability in short-term cultures of rat corporeal vascular smooth muscle cells,” Journal of Urology, vol. 175, no. 1, pp. 381–386, 2006. View at Publisher · View at Google Scholar · View at Scopus