Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 183042, 11 pages
http://dx.doi.org/10.1155/2013/183042
Research Article

p38/AP-1 Pathway in Lipopolysaccharide-Induced Inflammatory Responses Is Negatively Modulated by Electrical Stimulation

1Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
2College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
3Research Institute, Human Nanoelectrotech Co. Ltd., Seoul 151-050, Republic of Korea

Received 3 February 2013; Accepted 15 March 2013

Academic Editor: Yves Denizot

Copyright © 2013 Deok Jeong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Kinne, R. Bräuer, B. Stuhlmüller, E. Palombo-Kinne, and G. R. Burmester, “Macrophages in rheumatoid arthritis,” Arthritis Research, vol. 2, no. 3, pp. 189–202, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Owens, A. A. Babcock, J. M. Millward, and H. Toft-Hansen, “Cytokine and chemokine inter-regulation in the inflamed or injured CNS,” Brain Research Reviews, vol. 48, no. 2, pp. 178–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Gracie, R. J. Forsey, W. L. Chan et al., “A proinflammatory role for IL-18 in rheumatoid arthritis,” Journal of Clinical Investigation, vol. 104, no. 10, pp. 1393–1401, 1999. View at Google Scholar · View at Scopus
  4. B. Stuhlmuller, U. Ungethum, S. Scholze et al., “Identification of known and novel genes in activated monocytes from patients with rheumatoid arthritis,” Arthritis and Rheumatism, vol. 43, no. 4, pp. 775–790, 2000. View at Google Scholar
  5. E. Michaëlssony, M. Holmdahl, Å. Engström, H. Burkhardt, A. Scheynius, and R. Holmdahl, “Macrophages, but not dendritic cells, present collagen to T cells,” European Journal of Immunology, vol. 25, no. 8, pp. 2234–2241, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. H. J. Ko, J. H. Jin, O. S. Kwon, J. T. Kim, K. H. Son, and H. P. Kim, “Inhibition of experimental lung inflammation and bronchitis by phytoformula containing Broussonetia papyrifera and Ionicera japonica,” Biomolecules and Therapeutics, vol. 19, no. 3, pp. 324–330, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. G. Leon, R. Tory, J. Jia, O. Sivak, and K. M. Wasan, “Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases,” Pharmaceutical Research, vol. 25, no. 8, pp. 1751–1761, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Sekine, T. Yumioka, T. Yamamoto et al., “Modulation of TLR4 signaling by a novel adaptor protein signal-transducing adaptor protein-2 in macrophages,” Journal of Immunology, vol. 176, no. 1, pp. 380–389, 2006. View at Google Scholar · View at Scopus
  9. K. Takeda and S. Akira, “Roles of Toll-like receptors in innate immune responses,” Genes to Cells, vol. 6, no. 9, pp. 733–742, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Bresnihan, “Pathogenesis of joint damage in rheumatoid arthritis,” Journal of Rheumatology, vol. 26, no. 3, pp. 717–719, 1999. View at Google Scholar · View at Scopus
  11. G. R. Burmester, B. Stuhlmüller, G. Keyszer, and R. W. Kinne, “Mononuclear phagocytes and rheumatoid synovitis: mastermind or workhorse in arthritis?” Arthritis and Rheumatism, vol. 40, no. 1, pp. 5–18, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. T. J. Kang, J. S. Moon, S. Lee, and D. Yim, “Polyacetylene compound from Cirsium japonicum var. ussuriense inhibits the LPS-induced inflammatory reaction via suppression of NF-κ B activity in RAW 264.7 cells,” Biomolecules and Therapeutics, vol. 19, no. 1, pp. 97–101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Beever, “Far-infrared saunas for treatment of cardiovascular risk factors: summary of published evidence,” Canadian Family Physician, vol. 55, no. 7, pp. 691–696, 2009. View at Google Scholar · View at Scopus
  14. S. Inoue and M. Kabaya, “Biological activities caused by far-infrared radiation,” International Journal of Biometeorology, vol. 33, no. 3, pp. 145–150, 1989. View at Publisher · View at Google Scholar · View at Scopus
  15. C. S. Rau, J. C. S. Yang, S. F. Jeng et al., “Far-infrared radiation promotes angiogenesis in human microvascular endothelial cells via extracellular signal-regulated kinase activation,” Photochemistry and Photobiology, vol. 87, no. 2, pp. 441–446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. C. C. Lin, C. F. Chang, M. Y. Lai, T. W. Chen, P. C. Lee, and W. C. Yang, “Far-infrared therapy: a novel treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis patients,” Journal of the American Society of Nephrology, vol. 18, no. 3, pp. 985–992, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Giangregorio, C. Craven, K. Richards et al., “A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on body composition,” Journal of Spinal Cord Medicine, vol. 35, no. 5, pp. 351–360, 2012. View at Publisher · View at Google Scholar
  18. N. Shafer and G. Kitay, “Transcutaneous electrical nerve stimulation and pain relief: an overview,” Medical electronics, vol. 19, no. 5, pp. 132–136, 1988. View at Google Scholar · View at Scopus
  19. A. Khadilkar, S. Milne, L. Brosseau et al., “Transcutaneous electrical nerve stimulation (TENS) for chronic low-back pain,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD003008, 2005. View at Google Scholar · View at Scopus
  20. P. Sarzi-Puttini, M. A. Cimmino, R. Scarpa et al., “Osteoarthritis: an overview of the disease and its treatment strategies,” Seminars in Arthritis and Rheumatism, vol. 35, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. T. J. Berger, J. A. Spadaro, and R. Bierman, “Antifungal properties of electrically generated metallic ions,” Antimicrobial Agents and Chemotherapy, vol. 10, no. 5, pp. 856–860, 1976. View at Google Scholar · View at Scopus
  22. T. J. Berger, J. A. Spadaro, S. E. Chapin, and R. O. Becker, “Electrically generated silver ions: quantitative effects on bacterial and mammalian cells,” Antimicrobial Agents and Chemotherapy, vol. 9, no. 2, pp. 357–358, 1976. View at Google Scholar · View at Scopus
  23. Y. C. Cho, S. H. Lee, M. Lee et al., “Enhanced IL-12p40 production in LPS-stimulated macrophages by inhibiting JNK activation by artemisinin,” Archives of Pharmacal Research, vol. 35, no. 11, pp. 1961–1968, 2012. View at Google Scholar
  24. J. Y. Cho, K. U. Baik, J. H. Jung, and M. H. Park, “In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa,” European Journal of Pharmacology, vol. 398, no. 3, pp. 399–407, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Yayeh, K. H. Jung, H. Y. Jeong et al., “Korean red ginseng saponin fraction downregulates proinflammatory mediators in LPS stimulated RAW264. 7 cells and protects mice against endotoxic shock,” Journal of Ginseng Research, vol. 36, no. 3, pp. 263–269, 2012. View at Publisher · View at Google Scholar
  26. R. Pauwels, J. Balzarini, M. Baba et al., “Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds,” Journal of Virological Methods, vol. 20, no. 4, pp. 309–321, 1988. View at Google Scholar · View at Scopus
  27. T. Shen, J. Lee, M. H. Park et al., “Ginsenoside Rp1, a ginsenoside derivative, blocks promoter activation of iNOS and Cox-2 genes by suppression of an IKKβ-mediated NF-κ B pathway in HEK293 cells,” Journal of Ginseng Research, vol. 35, no. 2, pp. 200–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. R. Kim, D. R. Oh, M. H. Cha et al., “Protective effect of polygoni cuspidati radix and emodin on Vibrio vulnificus cytotoxicity and infection,” Journal of Microbiology, vol. 46, no. 6, pp. 737–743, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. O. Kim and S. W. Lee, “Microarray analysis of gene expression by ginseng water extracts in a mouse adrenal cortex after immobilization stress,” Journal of Ginseng Research, vol. 35, no. 1, pp. 111–123, 2011. View at Publisher · View at Google Scholar
  30. J. Kwon, S. Kim, S. Shim, D. S. Choi, J. H. Kim, and Y. B. Kwon, “Modulation of LPS-stimulated astroglial activation by ginseng total saponins,” Journal of Ginseng Research, vol. 35, no. 1, pp. 80–85, 2011. View at Publisher · View at Google Scholar
  31. M. K. Shim and Y. J. Lee, “Estrogen receptor is activated by Korean red ginseng in vitro but not in vivo,” Journal of Ginseng Research, vol. 36, no. 2, pp. 169–175, 2012. View at Publisher · View at Google Scholar
  32. J. A. Lee, M. Y. Lee, I. S. Shin, C. S. Seo, H. Ha, and H. K. Shin, “Anti-inflammatory effects of Amomum compactum on RAW 264. 7 cells via induction of heme oxygenase-1,” Archives of Pharmacal Research, vol. 35, no. 4, pp. 739–746, 2012. View at Google Scholar
  33. Y. G. Lee, W. M. Lee, J. Y. Kim et al., “Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells,” British Journal of Pharmacology, vol. 154, no. 4, pp. 852–863, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. H. D. Kim, S. E. Ha, J. R. Kang, and J. K. Park, “Effect of Korean red ginseng extract on cell death responses in peroxynitrite-treated keratinocytes,” Journal of Ginseng Research, vol. 34, no. 3, pp. 205–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Matt, “Transcriptional control of the inflammatory response: a role for the CREB-binding protein (CBP),” Acta Medica Austriaca, vol. 29, no. 3, pp. 77–79, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. R. A. Hipskind and G. Bilbe, “MAP kinase signaling cascades and gene expression in osteoblasts,” Frontiers in Bioscience, vol. 3, pp. d804–d816, 1998. View at Google Scholar · View at Scopus
  37. Y. Terada, O. Nakashima, S. Inoshita, M. Kuwahara, S. Sasaki, and F. Marumo, “Mitogen-activated protein kinase cascade and transcription factors: the opposite role of MKK3/6-p38K and MKK1-MAPK,” Nephrology Dialysis Transplantation, vol. 14, no. 1, pp. 45–47, 1999. View at Google Scholar · View at Scopus
  38. L. Li, S. F. Chen, and Y. Liu, “MAP kinase phosphatase-1, a critical negative regulator of the innate immune response,” International Journal of Clinical and Experimental Medicine, vol. 2, no. 1, pp. 48–67, 2009. View at Google Scholar · View at Scopus
  39. F. M. Ho, C. C. Lai, L. J. Huang, T. C. Kuo, C. M. Chao, and W. W. Lin, “The anti-inflammatory carbazole, LCY-2-CHO, inhibits lipopolysaccharide- induced inflammatory mediator expression through inhibition of the p38 mitogen-activated protein kinase signaling pathway in macrophages,” British Journal of Pharmacology, vol. 141, no. 6, pp. 1037–1047, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Kaur, P. Lyte, M. Garay et al., “Galvanic zinc-copper microparticles produce electrical stimulation that reduces the inflammatory and immune responses in skin,” Archives of Dermatological Research, vol. 303, no. 8, pp. 551–562, 2011. View at Publisher · View at Google Scholar
  41. I. S. Kim, J. K. Song, Y. M. Song et al., “Novel effect of biphasic electric current on in vitro osteogenesis and cytokine production in human mesenchymal stromal cells,” Tissue Engineering A, vol. 15, no. 9, pp. 2411–2422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Erridge, “Endogenous ligands of TLR2 and TLR4: agonists or assistants?” Journal of Leukocyte Biology, vol. 87, no. 6, pp. 989–999, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Dupont, C. Cieniewski-Bernard, B. Bastide, and L. Stevens, “Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK,” American Journal of Physiology, vol. 300, no. 2, pp. R408–R417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Morino, T. Kondo, K. Sasaki et al., “Mild electrical stimulation with heat shock ameliorates insulin resistance via enhanced insulin signaling,” PLoS One, vol. 3, no. 12, Article ID e4068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Koga, Y. Kai, R. Fukuda et al., “Mild electrical stimulation and heat shock ameliorates progressive proteinuria and renal inflammation in mouse model of alport syndrome,” PLoS One, vol. 7, no. 8, Article ID e43852, 2012. View at Publisher · View at Google Scholar