Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 329740, 10 pages
http://dx.doi.org/10.1155/2013/329740
Research Article

4-Methoxycarbonyl Curcumin: A Unique Inhibitor of Both Inflammatory Mediators and Periodontal Inflammation

1Department of General Dentistry, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794-8706, USA
2Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA
3Department of Oral and Maxillofacial Diseases, Institute of Dentistry, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
4Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
5Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA

Received 22 August 2013; Revised 29 October 2013; Accepted 30 October 2013

Academic Editor: Freek Zijlstra

Copyright © 2013 Ying Gu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. E. Van Dyke and A. J. Van Winkelhoff, “Infection and inflammatory mechanisms,” Journal of Periodontology, vol. 84, supplement 14, no. 4, pp. S1–S7, 2013. View at Publisher · View at Google Scholar
  2. Y. Gu and M. E. Ryan, “Overview of periodontal diseases: causes, pathogenesis, and characteristics,” in Periodontal Diseases and Overall Health: A Clinician’s Guide, R. Williams and R. Genco, Eds., pp. 5–23, Professional Audience Communications, Yardley, Pa, USA, 2009. View at Google Scholar
  3. B. B. Aggarwal and K. B. Harikumar, “Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 1, pp. 40–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Sikora, A. Bielak-Zmijewska, G. Mosieniak, and K. Piwocka, “The promise of slow down ageing may come from curcumin,” Current Pharmaceutical Design, vol. 16, no. 7, pp. 884–892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. B. L. Queen and T. O. Tollefsbol, “Polyphenols and aging,” Current Aging Science, vol. 3, no. 1, pp. 34–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. B. B. Aggarwal, A. Kumar, and A. C. Bharti, “Anticancer potential of curcumin: preclinical and clinical studies,” Anticancer Research, vol. 23, no. 1A, pp. 363–398, 2003. View at Google Scholar · View at Scopus
  7. O. P. Sharma, “Antioxidant activity of curcumin and related compounds,” Biochemical Pharmacology, vol. 25, no. 15, pp. 1811–1812, 1976. View at Publisher · View at Google Scholar · View at Scopus
  8. A. J. Ruby, G. Kuttan, K. Dinesh Babu, K. N. Rajasekharan, and R. Kuttan, “Anti-tumour and antioxidant activity of natural curcuminoids,” Cancer Letters, vol. 94, no. 1, pp. 79–83, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. A. N. Begum, M. R. Jones, G. P. Lim et al., “Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease,” Journal of Pharmacology and Experimental Therapeutics, vol. 326, no. 1, pp. 196–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, “Bioavailability of curcumin: problems and promises,” Molecular Pharmaceutics, vol. 4, no. 6, pp. 807–818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Zhang, L. M. Golub, F. Johnson, and A. Wishnia, “pKa, zinc- and serum albumin-binding of curcumin and two novel biologically-active chemically-modified curcumins,” Current Medicinal Chemistry, vol. 19, no. 25, pp. 4367–4375, 2012. View at Publisher · View at Google Scholar
  12. Y. Zhang, Y. Gu, H. M. Lee et al., “Design, synthesis and biological activity of new polyenolic inhibitors of matrix metalloproteinases: a focus on chemically-modified curcumins,” Current Medicinal Chemistry, vol. 19, no. 25, pp. 4348–4358, 2012. View at Publisher · View at Google Scholar
  13. C. Tesseromatis, A. Kotsiou, H. Parara, E. Vairaktaris, and M. Tsamouri, “Morphological changes of gingiva in streptozotocin diabetic rats,” International Journal of Dentistry, vol. 2009, Article ID 725628, 4 pages, 2009. View at Publisher · View at Google Scholar
  14. M. E. Ryan, N. S. Ramamurthy, T. Sorsa, and L. M. Golub, “MMP-mediated events in diabetes,” Annals of the New York Academy of Sciences, vol. 878, pp. 311–334, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. K. M. Chang, M. E. Ryan, L. M. Golub, N. S. Ramamurthy, and T. F. McNamara, “Local and systemic factors in periodontal disease increase matrix-degrading enzyme activities in rat gingiva: effect of micocycline therapy,” Research Communications in Molecular Pathology and Pharmacology, vol. 91, no. 3, pp. 303–318, 1996. View at Google Scholar · View at Scopus
  16. H. Toker, H. Ozdemir, H. Balcı, and H. Ozer, “N-acetylcysteine decreases alveolar bone loss on experimental periodontitis in streptozotocin-induced diabetic rats,” Journal of Periodontal Research, vol. 47, no. 6, pp. 793–799, 2012. View at Publisher · View at Google Scholar
  17. M. Elburki, A. Goren, H. Lee et al., “Chemically-modified curcumins and alveolar bone loss in diabetic rats,” Journal of Dental Research, vol. 90, abstract 2295, 2011. View at Google Scholar
  18. L. Tornatore, A. K. Thotakura, J. Bennett, M. Moretti, and G. Franzoso, “The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation,” Trends in Cell Biology, vol. 22, no. 11, pp. 557–566, 2012. View at Publisher · View at Google Scholar
  19. H.-M. Lee, S. G. Ciancio, G. Tüter, M. E. Ryan, E. Komaroff, and L. M. Golub, “Subantimicrobial dose doxycycline efficacy as a matrix metalloproteinase inhibitor in chronic periodontitis patients is enhanced when combined with a non-steriodal anti-inflammatory drug,” Journal of Periodontology, vol. 75, no. 3, pp. 453–463, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. L.M. Golub, H.-M. Lee, J. A. Stoner et al., “Subantimicrobial-dose doxycycline modulates gingival crevicular fluid biomarkers of periodontitis in postmenopausal osteopenic women,” Journal of Periodontology, vol. 79, no. 8, pp. 1409–1418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Gu, H.-M. Lee, T. Sorsa, S. R. Simon, and L. M. Golub, “Doxycyline inhibits mononuclear cell-mediated connective tissue breakdown,” FEMS Immunology and Medical Microbiology, vol. 58, no. 2, pp. 218–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D. L. Brown, K. K. Desai, B. A. Vakili, C. Nouneh, H.-M. Lee, and L. M. Golub, “Clinical and biochemical results of the metalloproteinase inhibition with subantimicrobial doses of doxycycline to prevent acute coronary syndromes (MIDAS) pilot trial,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 4, pp. 733–738, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Naderi, A. E. Teschendorff, J. Beigel et al., “BEX2 is overexpressed in a subset of primary breast cancers and mediates nerve growth factor/nuclear factor-κB inhibition of apoptosis in breast cancer cell lines,” Cancer Research, vol. 67, no. 14, pp. 6725–6736, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. G. Mitchell, H. A. Magna, L. M. Reeves et al., “Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage,” Journal of Clinical Investigation, vol. 97, no. 3, pp. 761–768, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Anand, S. G. Thomas, A. B. Kunnumakkara et al., “Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature,” Biochemical Pharmacology, vol. 76, no. 11, pp. 1590–1611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. L. M. Golub, H. M. Lee, M. E. Ryan, W. V. Giannobile, J. Payne, and T. Sorsa, “Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms,” Advances in Dental Research, vol. 12, no. 2, pp. 12–26, 1998. View at Google Scholar · View at Scopus
  27. C. Monaco, E. Andreakos, S. Kiriakidis et al., “Canonical pathway of nuclear factor κB activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 15, pp. 5634–5639, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. A. Ivanenkov, K. V. Balakin, and S. E. Tkachenko, “New approaches to the treatment of inflammatory disease: focus on small-molecule inhibitors of signal transduction pathways,” Drugs in R & D, vol. 9, no. 6, pp. 397–434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. V. R. Santos, J. A. Lima, T. S. Miranda et al., “Full-mouth disinfection as a therapeutic protocol for type-2 diabetic subjects with chronic periodontitis: twelve-month clinical outcomes: a randomized controlled clinical trial,” Journal of Clinical Periodontology, vol. 40, no. 2, pp. 155–162, 2013. View at Publisher · View at Google Scholar
  30. L. M. Golub, J. B. Payne, R. A. Reinhardt, and G. Nieman, “Can systemic diseases co-induce (not just exacerbate) periodontitis? a hypothetical “two-hit” model,” Journal of Dental Research, vol. 85, no. 2, pp. 102–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Claudino, G. Gennaro, T. M. Cestari et al., “Spontaneous periodontitis development in diabetic rats involves an unrestricted expression of inflammatory cytokines and tissue destructive factors in the absence of major changes in commensal oral microbiota,” Experimental Diabetes Research, vol. 2012, Article ID 356841, 10 pages, 2012. View at Publisher · View at Google Scholar
  32. V.-J. Uitto, K. Airola, M. Vaalamo et al., “Collagenase-3 (matrix metalloproteinase-13) expression is induced in oral mucosal epithelium during chronic inflammation,” American Journal of Pathology, vol. 152, no. 6, pp. 1489–1499, 1998. View at Google Scholar · View at Scopus
  33. Y. Gu, H.-M. Lee, H. Callen et al., “A novel chemically-modified-curcumin “Normalizes” impaired leukocyte competence in diabetic rats,” Journal of Dental Research. In press.