Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013 (2013), Article ID 509502, 12 pages
http://dx.doi.org/10.1155/2013/509502
Research Article

High Sugar Intake and Development of Skeletal Muscle Insulin Resistance and Inflammation in Mice: A Protective Role for PPAR-δ Agonism

1Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy
2Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Torino, Italy
3Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy

Received 24 March 2013; Revised 15 May 2013; Accepted 16 May 2013

Academic Editor: Daniel Konrad

Copyright © 2013 Elisa Benetti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. T. Samuel and G. I. Shulman, “Mechanisms for insulin resistance: common threads and missing links,” Cell, vol. 148, no. 5, pp. 852–871, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Hoeks, J. de Wilde, M. F. M. Hulshof et al., “High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance,” PLoS ONE, vol. 6, no. 11, Article ID e27274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Vijayakumar, Y. Wu, H. Sun et al., “Targeted loss of ghr signaling in mouse skeletal muscle protects against high-fat diet-induced metabolic deterioration,” Diabetes, vol. 61, no. 1, pp. 94–103, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. P. M. Badin, I. K. Vila, K. Louche et al., “High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle,” Endocrinology, vol. 154, no. 4, pp. 1444–1453, 2013. View at Publisher · View at Google Scholar
  5. M. Collino, E. Benetti, M. Rogazzo et al., “Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-δ agonism correlates with impaired NLRP3 inflammasome activation,” Biochemical Pharmacology, vol. 85, no. 2, pp. 257–264, 2013. View at Publisher · View at Google Scholar
  6. M. Collino, “High dietary fructose intake: sweet or bitter life?” World Journal of Diabetes, vol. 2, pp. 77–81, 2011. View at Google Scholar
  7. E. Benetti, N. S. A. Patel, and M. Collino, “The role of PPARβ/δ in the management of metabolic syndrome and its associated cardiovascular complications,” Endocrine, Metabolic and Immune Disorders—Drug Targets, vol. 11, no. 4, pp. 273–284, 2011. View at Google Scholar · View at Scopus
  8. G. D. Barish, V. A. Narkar, and R. M. Evans, “PPARδ: a dagger in the heart of the metabolic syndrome,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 590–597, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Schuler, F. Ali, C. Chambon et al., “PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes,” Cell Metabolism, vol. 4, no. 5, pp. 407–414, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Li, Z. Luo, H. Yu et al., “Telmisartan improves insulin resistance of skeletal muscle through peroxisome proliferator-activated receptor-δ activation,” Diabetes, vol. 62, no. 3, pp. 762–774, 2013. View at Publisher · View at Google Scholar
  11. D. Cuevas-Ramos, C. A. Aguilar-Salinas, and F. J. Gomez-Perez, “Metabolic actions of fibroblast growth factor 21,” Current Opinion in Pediatrics, vol. 24, no. 4, pp. 523–529, 2012. View at Publisher · View at Google Scholar
  12. T. L. Graham, C. Mookherjee, K. E. Suckling, C. N. A. Palmer, and L. Patel, “The PPARδ agonist GW0742X reduces atherosclerosis in LDLR-/- mice,” Atherosclerosis, vol. 181, no. 1, pp. 29–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. D. R. Meldrum, R. Shenkar, B. C. Sheridan, B. S. Cain, E. Abraham, and A. H. Harken, “Hemorrhage activates myocardial NFκB and increases TNF-α in the heart,” Journal of Molecular and Cellular Cardiology, vol. 29, no. 10, pp. 2849–2854, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. K. S. Collison, S. M. Saleh, R. H. Bakheet et al., “Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55,” Obesity, vol. 17, no. 11, pp. 2003–2013, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. H. R. Light, E. Tsanzi, J. Gigliotti, K. Morgan, and J. C. Tou, “The type of caloric sweetener added to water influences weight gain, fat mass, and reproduction in growing Sprague-Dawley female rats,” Experimental Biology and Medicine, vol. 234, no. 6, pp. 651–661, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Cohen and M. Goedert, “GSK3 inhibitors: development and therapeutic potential,” Nature Reviews Drug Discovery, vol. 3, no. 6, pp. 479–487, 2004. View at Google Scholar · View at Scopus
  17. C. M. Taniguchi, B. Emanuelli, and C. R. Kahn, “Critical nodes in signalling pathways: insights into insulin action,” Nature Reviews Molecular Cell Biology, vol. 7, no. 2, pp. 85–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. D. A. E. Cross, D. R. Alessi, P. Cohen, M. Andjelkovich, and B. A. Hemmings, “Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B,” Nature, vol. 378, no. 6559, pp. 785–789, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. J. N. Nielsen and J. F. P. Wojtaszewski, “Regulation of glycogen synthase activity and phosphorylation by exercise,” Proceedings of the Nutrition Society, vol. 63, no. 2, pp. 233–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Bouzakri, A. Zachrisson, L. Al-Khalili et al., “siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle,” Cell Metabolism, vol. 4, no. 1, pp. 89–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. G. W. Gould and G. D. Holman, “The glucose transporter family: structure, function and tissue-specific expression,” Biochemical Journal, vol. 295, part 2, pp. 329–341, 1993. View at Google Scholar · View at Scopus
  22. J. R. Zierath, L. A. Nolte, E. Wahlstrom et al., “Carrier-mediated fructose uptake significantly contributes to carbohydrate metabolism in human skeletal muscle,” Biochemical Journal, vol. 311, part 2, pp. 517–521, 1995. View at Google Scholar · View at Scopus
  23. E. Gonzalez and T. E. McGraw, “Insulin signaling diverges into Akt-dependent and -independent signals to regulate the recruitment/docking and the fusion of GLUT4 vesicles to the plasma membrane,” Molecular Biology of the Cell, vol. 17, no. 10, pp. 4484–4493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Leto and A. R. Saltiel, “Regulation of glucose transport by insulin: traffic control of GLUT4,” Nature Reviews Molecular Cell Biology, vol. 13, no. 6, pp. 383–396, 2012. View at Publisher · View at Google Scholar
  25. X. Zeng, C. Zhang, M. Tong et al., “Knockdown of NYGGF4 increases glucose transport in C2C12 mice skeletal myocytes by activation IRS-1/PI3K/AKT insulin pathway,” Journal of Bioenergetics and Biomembranes, vol. 44, no. 3, pp. 351–355, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Yue, S. S. Nerurkar, W. Bao et al., “In vivo activation of peroxisome proliferator-activated receptor-δ protects the heart from ischemia/reperfusion injury in Zucker fatty rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 2, pp. 466–474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. B. F. Holmes, E. J. Kurth-Kraczek, and W. W. Winder, “Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle,” Journal of Applied Physiology, vol. 87, no. 5, pp. 1990–1995, 1999. View at Google Scholar · View at Scopus
  28. N. Musi and L. J. Goodyear, “AMP-activated protein kinase and muscle glucose uptake,” Acta Physiologica Scandinavica, vol. 178, no. 4, pp. 337–345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. S. N. Jakobsen, D. G. Hardie, N. Morrice, and H. E. Tornqvist, “5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside,” The Journal of Biological Chemistry, vol. 276, no. 50, pp. 46912–46916, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Fujii, R. C. Ho, Y. Manabe et al., “Ablation of AMP-activated protein kinase α 2 activity exacerbates insulin resistance induced by high-fat feeding of mice,” Diabetes, vol. 57, no. 11, pp. 2958–2966, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. N. B. Ruderman, A. K. Saha, and E. W. Kraegen, “Minireview: malonyl CoA, AMP-activated protein kinase, and adiposity,” Endocrinology, vol. 144, no. 12, pp. 5166–5171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Luquet, J. Lopez-Soriano, D. Holst et al., “Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability,” FASEB Journal, vol. 17, no. 15, pp. 2299–2301, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Tanaka, J. Yamamoto, S. Iwasaki et al., “Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15924–15929, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Wang, C. Zhang, R. T. Yu et al., “Regulation of muscle fiber type and running endurance by PPARδ,” PLoS Biology, vol. 2, no. 10, article e294, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Bonala, S. Lokireddy, H. Arigela et al., “Peroxisome proliferator-activated receptor β/δ induces myogenesis by modulating myostatin activity,” The Journal of Biological Chemistry, vol. 287, no. 16, pp. 12935–12951, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Planavila, R. Rodríguez-Calvo, M. Jové et al., “Peroxisome proliferator-activated receptor β/δ activation inhibits hypertrophy in neonatal rat cardiomyocytes,” Cardiovascular Research, vol. 65, no. 4, pp. 832–841, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Ding, L. Cheng, Q. Qin, S. Frontin, and Q. Yang, “PPARδ modulates lipopolysaccharide-induced TNFα inflammation signaling in cultured cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 40, no. 6, pp. 821–828, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. F. Rubio-Guerra, H. Vargas-Robles, A. M. Serrano, G. Vargas-Ayala, L. Rodriguez-Lopez, and B. A. Escalante-Acosta, “Correlation between the levels of circulating adhesion molecules and atherosclerosis in hypertensive type-2 diabetic patients,” Clinical and Experimental Hypertension, vol. 32, no. 5, pp. 308–310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. E. R. Ropelle, J. R. Pauli, D. E. Cintra et al., “Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice,” Diabetes, vol. 62, no. 2, pp. 466–470, 2013. View at Publisher · View at Google Scholar
  40. K. P. Hoeflich, J. Luo, E. A. Rubie, M. Tsao, O. Jin, and J. R. Woodgett, “Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation,” Nature, vol. 406, no. 6791, pp. 86–90, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Kharitonenkov, T. L. Shiyanova, A. Koester et al., “FGF-21 as a novel metabolic regulator,” Journal of Clinical Investigation, vol. 115, no. 6, pp. 1627–1635, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Kharitonenkov, V. J. Wroblewski, A. Koester et al., “The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21,” Endocrinology, vol. 148, no. 2, pp. 774–781, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Arner, A. Pettersson, P. J. Mitchell, J. D. Dunbar, A. Kharitonenkov, and M. Rydén, “FGF21 attenuates lipolysis in human adipocytes—a possible link to improved insulin sensitivity,” FEBS Letters, vol. 582, no. 12, pp. 1725–1730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Li, H. Ge, J. Weiszmann et al., “Inhibition of lipolysis may contribute to the acute regulation of plasma FFA and glucose by FGF21 in ob/ob mice,” FEBS Letters, vol. 583, no. 19, pp. 3230–3234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. K. Badman, P. Pissios, A. R. Kennedy, G. Koukos, J. S. Flier, and E. Maratos-Flier, “Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states,” Cell Metabolism, vol. 5, no. 6, pp. 426–437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. F. L. Mashili, R. L. Austin, A. S. Deshmukh et al., “Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity,” Diabetes/Metabolism Research and Reviews, vol. 27, no. 3, pp. 286–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Inagaki, P. Dutchak, G. Zhao et al., “Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21,” Cell Metabolism, vol. 5, no. 6, pp. 415–425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. E. S. Muise, B. Azzolina, D. W. Kuo et al., “Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor γ and altered metabolic states,” Molecular Pharmacology, vol. 74, no. 2, pp. 403–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Wang, L. Qiang, and S. R. Farmer, “Identification of a domain within peroxisome proliferator-activated receptor γ regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes,” Molecular and Cellular Biology, vol. 28, no. 1, pp. 188–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Christodoulides, P. Dyson, D. Sprecher, K. Tsintzas, and F. Karpe, “Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 9, pp. 3594–3601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. S. Lee, S. Choi, E. S. Ha et al., “Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB,” Metabolism: Clinical and Experimental, vol. 61, no. 8, pp. 1142–1151, 2012. View at Publisher · View at Google Scholar · View at Scopus