Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 510212, 14 pages
http://dx.doi.org/10.1155/2013/510212
Research Article

Protective Effect of Short-Term Genistein Supplementation on the Early Stage in Diabetes-Induced Renal Damage

Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea

Received 14 January 2013; Revised 25 March 2013; Accepted 27 March 2013

Academic Editor: Fábio Santos Lira

Copyright © 2013 Min Ju Kim and Yunsook Lim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Setacci, G. De Donato, F. Setacci, and E. Chisci, “Diabetic patients: epidemiology and global impact,” Journal of Cardiovascular Surgery, vol. 50, no. 3, pp. 263–273, 2009. View at Google Scholar · View at Scopus
  2. V. Vallon and S. C. Thomson, “Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney,” Annual Review of Physiology, vol. 74, pp. 351–375, 2012. View at Google Scholar
  3. A. C. Maritim, R. A. Sanders, and J. B. Watkins III, “Diabetes, oxidative stress, and antioxidants: a review,” Journal of Biochemical and Molecular Toxicology, vol. 17, no. 1, pp. 24–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Ponugoti, G. Dong, and D. T. Graves, “Role of forkhead transcription factors in diabetes-induced oxidative stress,” Experimental Diabetes Research, vol. 2012, Article ID 939751, 7 pages, 2012. View at Google Scholar
  5. A. P. Sanchez and K. Sharma, “Transcription factors in the pathogenesis of diabetic nephropathy,” Expert Reviews in Molecular Medicine, vol. 11, article e13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Schmid, A. Boucherot, Y. Yasuda et al., “Modular activation of nuclear factor-κB transcriptional programs in human diabetic nephropathy,” Diabetes, vol. 55, no. 11, pp. 2993–3003, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Valen, Z. Q. Yan, and G. K. Hansson, “Nuclear factor kappa-B and the heart,” Journal of the American College of Cardiology, vol. 38, no. 2, pp. 307–314, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. L. M. Pedruzzi, M. B. Stockler-Pinto, M. Leite Jr., and D. Mafra, “Nrf2-keap1 system versus NF-κB: the good and the evil in chronic kidney disease?” Biochimie, vol. 94, no. 12, pp. 2461–2466, 2012. View at Google Scholar
  9. S. Ghosh and M. S. Hayden, “New regulators of NF-kappaB in inflammation,” Nature Reviews Immunology, vol. 8, no. 11, pp. 837–848, 2008. View at Google Scholar
  10. J. S. Nam, M. H. Cho, G. T. Lee et al., “The activation of NF-κB and AP-1 in peripheral blood mononuclear cells isolated from patients with diabetic nephropathy,” Diabetes Research and Clinical Practice, vol. 81, no. 1, pp. 25–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Mezzano, C. Aros, A. Droguett et al., “NF-κB activation and overexpression of regulated genes in human diabetic nephropathy,” Nephrology Dialysis Transplantation, vol. 19, no. 10, pp. 2505–2512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Chen, J. Zhang, Y. Zhang, Y. Wang, and B. Wang, “Improvement of inflammatory responses associated with NF-κB pathway in kidneys from diabetic rats,” Inflammation Research, vol. 57, no. 5, pp. 199–204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Zheng, S. A. Whitman, W. Wu et al., “Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy,” Diabetes, vol. 60, no. 11, pp. 3055–3066, 2011. View at Google Scholar
  14. E. E. Vomhof-Dekrey and M. J. Picklo Sr., “The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism,” The Journal of Nutritional Biochemistry, vol. 23, no. 10, pp. 1201–1206, 2012. View at Google Scholar
  15. H. J. Kim and N. D. Vaziri, “Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure,” American Journal of Physiology, vol. 298, no. 3, pp. F662–F671, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Jiang, Z. Huang, Y. Lin, Z. Zhang, D. Fang, and D. D. Zhang, “The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy,” Diabetes, vol. 59, no. 4, pp. 850–860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. S. Kanwar, J. Wada, L. Sun et al., “Diabetic nephropathy: mechanisms of renal disease progression,” Experimental Biology and Medicine, vol. 233, no. 1, pp. 4–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. H. Ayo, R. Radnik, J. A. Garoni, D. A. Troyer, and J. I. Kreisberg, “High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cell culture,” American Journal of Physiology, vol. 261, no. 4, part 2, pp. F571–F577, 1991. View at Google Scholar · View at Scopus
  19. M. E. Sobhia, B. K. Grewal, J. Bhat, S. Rohit, and V. Punia, “Protein kinase C βII in diabetic complications: survey of structural, biological and computational studies,” Expert Opinion on Therapeutic Targets, vol. 16, no. 3, pp. 325–344, 2012. View at Google Scholar
  20. K. Morino, K. F. Petersen, and G. I. Shulman, “Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction,” Diabetes, vol. 55, no. 2, pp. S9–S15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Ikeda, S. Matsushita, and Y. Sakakibara, “Inhibition of protein kinase C β ameliorates impaired angiogenesis in type I diabetic mice complicating myocardial infarction,” Circulation Journal, vol. 76, no. 4, pp. 943–949, 2012. View at Google Scholar
  22. M. Meier, J. K. Park, D. Overheu et al., “Deletion of protein kinase C-β isoform in vivo reduces renal hypertrophy but not albuminuria in the streptozotocin-induced diabetic mouse model,” Diabetes, vol. 56, no. 2, pp. 346–354, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. V. B. Gencel, M. M. Benjamin, S. N. Bahou, and R. A. Khalil, “Vascular effects of phytoestrogens and alternative menopausal hormone therapy in cardiovascular disease,” Mini-Reviews in Medicinal Chemistry, vol. 12, no. 2, pp. 149–174, 2012. View at Google Scholar
  24. T. J. Stephenson, K. D. R. Setchell, C. W. C. Kendall, D. J. A. Jenkins, J. W. Anderson, and P. Fanti, “Effect of soy protein-rich diet on renal function in young adults with insulin-dependent diabetes mellitus,” Clinical Nephrology, vol. 64, no. 1, pp. 1–11, 2005. View at Google Scholar · View at Scopus
  25. A. Orgaard and L. Jensen, “The effects of soy isoflavones on obesity,” Experimental Biology and Medicine, vol. 233, no. 9, pp. 1066–1080, 2008. View at Google Scholar
  26. J. M. Pavese, R. L. Farmer, and R. C. Bergan, “Inhibition of cancer cell invasion and metastasis by genistein,” Cancer and Metastasis Reviews, vol. 29, no. 3, pp. 465–482, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Palanisamy, P. Viswanathan, and C. V. Anuradha, “Effect of genistein, a soy isof lavone, on whole body insulin sensitivity and renal damage induced by a high-fructose diet,” Renal Failure, vol. 30, no. 6, pp. 645–654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. W. J. Yuan, F. Y. Jia, and J. Z. Meng, “Effects of genistein on secretion of extracellular matrix components and transforming growth factor beta in high-glucose-cultured rat mesangial cells,” Journal of Artificial Organs, vol. 12, no. 4, pp. 242–246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. A. Elmarakby, A. S. Ibrahim, J. Faulkner, M. S. Mozaffari, G. I. Liou, and R. Abdelsayed, “Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice,” Vascular Pharmacology, vol. 55, no. 5-6, pp. 149–156, 2011. View at Google Scholar
  30. I. Levitan, S. Volkov, and P. V. Subbaiah, “Oxidized LDL: diversity, patterns of recognition, and pathophysiology,” Antioxidants and Redox Signaling, vol. 13, no. 1, pp. 39–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. E. Valsecchi, S. Franchi, A. E. Panerai, P. Sacerdote, A. E. Trovato, and M. Colleoni, “Genistein, a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic nerve injury in mice: Anti-inflammatory and antioxidant activity,” Journal of Neurochemistry, vol. 107, no. 1, pp. 230–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Al-Shamaony, S. M. Al-Khazraji, and H. A. A. Twaij, “Hypoglycaemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals,” Journal of Ethnopharmacology, vol. 43, no. 3, pp. 167–171, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Andallu and N. C. Varadacharyulu, “Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozotocin-diabetic rats,” Clinica Chimica Acta, vol. 338, no. 1-2, pp. 3–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. F. X. Pi-Sunyer, “Weight loss in type 2 diabetic patients,” Diabetes Care, vol. 28, no. 6, pp. 1526–1527, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. S. Choi, U. J. Jung, J. Yeo, M. J. Kim, and M. K. Lee, “Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non-obese diabetic (NOD) mice,” Diabetes/Metabolism Research and Reviews, vol. 24, no. 1, pp. 74–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. P. V. Babu, H. Si, Z. Fu, W. Zhen, and D. Liu, “Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice,” Journal of Nutrition, vol. 142, no. 4, pp. 724–730, 2012. View at Google Scholar
  37. S. I. Yamagishi, K. Fukami, S. Ueda, and S. Okuda, “Molecular mechanisms of diabetic nephropathy and its therapeutic intervention,” Current Drug Targets, vol. 8, no. 8, pp. 952–959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Ventura-Sobrevilla, V. D. Boone-Villa, C. N. Aguilar et al., “Effect of varying dose and administration of streptozotocin on blood sugar in male CD1 mice,” Proceedings of the Western Pharmacology Society, vol. 54, pp. 5–9, 2011. View at Google Scholar
  39. E. Matteucci and O. Giampietro, “Proposal open for discussion: defining agreed diagnostic procedures in experimental diabetes research,” Journal of Ethnopharmacology, vol. 115, no. 2, pp. 163–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Yang, S. Wang, L. Li, Z. Liang, and L. Wang, “Genistein reduces hyperglycemia and islet cell loss in a high-dosage manner in rats with alloxan-induced pancreatic damage,” Pancreas, vol. 40, no. 3, pp. 396–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. A. D. Mooradian, “Dyslipidemia in type 2 diabetes mellitus,” Nature Clinical Practice Endocrinology & Metabolism, vol. 5, no. 3, pp. 150–159, 2009. View at Google Scholar
  42. G. Cerasola, M. Guarneri, and S. Cottone, “Inflammation, oxidative stress and kidney function in arterial hypertension,” Giornale Italiano di Nefrologia, vol. 26, pp. 8–13, 2009. View at Google Scholar · View at Scopus
  43. S. Cottone, M. C. Lorito, R. Riccobene et al., “Oxidative stress, inflammation and cardiovascular disease in chronic renal failure,” Journal of Nephrology, vol. 21, no. 2, pp. 175–179, 2008. View at Google Scholar · View at Scopus
  44. J. S. Lee, “Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats,” Life Sciences, vol. 79, no. 16, pp. 1578–1584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. Fu, E. R. Gilbert, L. Pfeiffer, Y. Zhang, Y. Fu, and D. Liu, “Genistein ameliorates hyperglycemia in a mouse model of nongenetic type 2 diabetes,” Applied Physiology, Nutrition, and Metabolism, vol. 37, no. 3, pp. 480–488, 2012. View at Google Scholar
  46. M. Kadkhodaee, S. Mikaeili, M. Zahmatkesh et al., “Alteration of renal functional, oxidative stress and inflammatory indices following hepatic ischemia-reperfusion,” General Physiology and Biophysics, vol. 31, no. 2, pp. 195–202, 2012. View at Google Scholar
  47. M. J. Sung, D. H. Kim, Y. J. Jung et al., “Genistein protects the kidney from cisplatin-induced injury,” Kidney International, vol. 74, no. 12, pp. 1538–1547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Kang and S. Pervaiz, “Mitochondria: redox metabolism and dysfunction,” Biochemistry Research International, vol. 2012, Article ID 896751, 14 pages, 2012. View at Google Scholar
  49. E. Ozbek, “Induction of oxidative stress in kidney,” International Journal of Nephrology, vol. 2012, Article ID 465897, 9 pages, 2012. View at Google Scholar
  50. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. A. E. Valsecchi, S. Franchi, A. E. Panerai, A. Rossi, P. Sacerdote, and M. Colleoni, “The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model,” European Journal of Pharmacology, vol. 650, no. 2-3, pp. 694–702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Salvi, A. M. Brunati, G. Clari, and A. Toninello, “Interaction of genistein with the mitochondrial electron transport chain results in opening of the membrane transition pore,” Biochimica et Biophysica Acta, vol. 1556, no. 2-3, pp. 187–196, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Motohashi and M. Yamamoto, “Nrf2-Keap1 defines a physiologically important stress response mechanism,” Trends in Molecular Medicine, vol. 10, no. 11, pp. 549–557, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Wang, F. Tian, S. A. Whitman et al., “Regulation of transforming growth factor beta1-dependent aldose reductase expression by the Nrf2 signal pathway in human mesangial cells,” European Journal of Cell Biology, vol. 91, no. 10, pp. 774–781, 2012. View at Google Scholar
  55. Z. Ungvari, L. Bailey-Downs, T. Gautam et al., “Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia,” American Journal of Physiology, vol. 300, no. 4, pp. H1133–H1140, 2011. View at Google Scholar
  56. J. Pi, Q. Zhang, J. Fu et al., “ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function,” Toxicology and Applied Pharmacology, vol. 244, no. 1, pp. 77–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. C. H. Park, J. S. Noh, J. H. Kim et al., “Evaluation of morroniside, iridoid glycoside from Corni Fructus, on diabetes-induced alterations such as oxidative stress, inflammation, and apoptosis in the liver of type 2 diabetic db/db mice,” Biological & Pharmaceutical Bulletin, vol. 34, no. 10, pp. 1559–1565, 2011. View at Google Scholar
  58. D. Koya, K. Hayashi, M. Kitada, A. Kashiwagi, R. Kikkawa, and M. Haneda, “Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats,” Journal of the American Society of Nephrology, vol. 14, no. 3, pp. S250–S253, 2003. View at Google Scholar · View at Scopus
  59. L. A. Sechi, A. Ceriello, C. A. Griffin et al., “Renal antioxidant enzyme mRNA levels are increased in rats with experimental diabetes mellitus,” Diabetologia, vol. 40, no. 1, pp. 23–29, 1997. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Zhang, F. Wang, H. X. Xu et al., “Activation of nuclear factor erythroid 2-related factor 2 and PPARγ, plays a role in the genistein-mediated attenuation of oxidative stress-induced endothelial cell injury,” British Journal of Nutrition, vol. 109, no. 2, pp. 223–235, 2013. View at Google Scholar
  61. N. G. Abraham and A. Kappas, “Pharmacological and clinical aspects of heme oxygenase,” Pharmacological Reviews, vol. 60, no. 1, pp. 79–127, 2008. View at Google Scholar
  62. W. Bao, F. Song, X. Li et al., “Plasma heme oxygenase-1 concentration is elevated in individuals with type 2 diabetes mellitus,” PLoS ONE, vol. 5, no. 8, article e12371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Rodriguez, B. Lopez, C. Perez et al., “Chronic tempol treatment attenuates the renal hemodynamic effects induced by a heme oxygenase inhibitor in streptozotocin diabetic rats,” American Journal of Physiology, vol. 301, no. 5, pp. R1540–R1548, 2011. View at Google Scholar
  64. C. Csonka, T. Pataki, P. Kovacs et al., “Effects of oxidative stress on the expression of antioxidative defense enzymes in spontaneously hypertensive rat hearts,” Free Radical Biology and Medicine, vol. 29, no. 7, pp. 612–619, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Judge, M. J. Young, A. Smith, T. Hagen, and C. Leeuwenburgh, “Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging,” FASEB Journal, vol. 19, no. 3, pp. 419–421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Miguel, A. C. Augusto, and S. A. Gurgueira, “Effect of acute vs chronic H2O2-induced oxidative stress on antioxidant enzyme activities,” Free Radical Research, vol. 43, no. 4, pp. 340–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Díaz-Flores, S. Angeles-Mejia, L. A. Baiza-Gutman et al., “Effect of an aqueous extract of Cucurbita ficifolia Bouchéon the glutathione redox cycle in mice with STZ-induced diabetes,” Journal of Ethnopharmacology, vol. 144, no. 1, pp. 101–108, 2012. View at Google Scholar
  68. A. Lau, N. F. Villeneuve, Z. Sun, P. K. Wong, and D. D. Zhang, “Dual roles of Nrf2 in cancer,” Pharmacological Research, vol. 58, no. 5-6, pp. 262–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Schmid, A. Boucherot, Y. Yasuda et al., “Modular activation of nuclear factor-κB transcriptional programs in human diabetic nephropathy,” Diabetes, vol. 55, no. 11, pp. 2993–3003, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Kim, E. Sohn, C. S. Kim, K. Jo, and J. S. Kim, “The role of high-mobility group box-1 protein in the development of diabetic nephropathy,” American Journal of Nephrology, vol. 33, no. 6, pp. 524–529, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Palanisamy, S. Kannappan, and C. V. Anuradha, “Genistein modulates NF-κB-associated renal inflammation, fibrosis and podocyte abnormalities in fructose-fed rats,” European Journal of Pharmacology, vol. 667, no. 1–3, pp. 355–364, 2011. View at Google Scholar
  72. P. Viatour, M. P. Merville, V. Bours, and A. Chariot, “Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation,” Trends in Biochemical Sciences, vol. 30, no. 1, pp. 43–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Alves, V. C. Calegari, D. A. Cunha, M. J. A. Saad, L. A. Velloso, and E. M. Rocha, “Increased expression of advanced glycation end-products and their receptor, and activation of nuclear factor kappa-B in lacrimal glands of diabetic rats,” Diabetologia, vol. 48, no. 12, pp. 2675–2681, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. J. F. Navarro-González, A. Jarque, M. Muros, C. Mora, and J. García, “Tumor necrosis factor-alpha as a therapeutic target for diabetic nephropathy,” Cytokine & Growth Factor Reviews, vol. 20, no. 2, pp. 165–173, 2009. View at Google Scholar
  75. J. F. Navarro, F. J. Milena, C. Mora et al., “Tumor necrosis factor-alpha gene expression in diabetic nephropathy: relationship with urinary albumin excretion and effect of angiotensin-converting enzyme inhibition,” Kidney International, no. 99, pp. S98–S102, 2005. View at Google Scholar · View at Scopus
  76. A. Taslipinar, H. Yaman, M. I. Yilmaz et al., “The relationship between inflammation, endothelial dysfunction and proteinuria in patients with diabetic nephropathy,” Scandinavian Journal of Clinical & Laboratory Investigation, vol. 71, no. 7, pp. 606–612, 2011. View at Google Scholar
  77. F. Liu, H. Y. Chen, X. R. Huang et al., “C-reactive protein promotes diabetic kidney disease in a mouse model of type 1 diabetes,” Diabetologia, vol. 54, no. 10, pp. 2713–2723, 2011. View at Google Scholar
  78. J. Czyzewska, K. Wasilewska, J. Kamińska, O. Koper, H. Kemona, and I. Jakubowska, “Assess the impact of concentrations of inflammatory markers IL-6, CRP in the presence of albuminuria in patients with type 2 diabetes,” Polski Merkuriusz Lekarski, vol. 32, no. 188, pp. 98–102, 2012. View at Google Scholar
  79. W. L. Hall, K. Vafeiadou, J. Hallund et al., “Soy-isoflavone-enriched foods and inflammatory biomarkers of cardiovascular disease risk in postmenopausal women: interactions with genotype and equol production,” American Journal of Clinical Nutrition, vol. 82, no. 6, pp. 1260–1268, 2005. View at Google Scholar · View at Scopus
  80. P. Fanti, R. Asmis, T. J. Stephenson, B. P. Sawaya, and A. A. Franke, “Positive effect of dietary soy in ESRD patients with systemic inflammation—correlation between blood levels of the soy isoflavones and the acute-phase reactants,” Nephrology Dialysis Transplantation, vol. 21, no. 8, pp. 2239–2246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Kaur, A. Chien, and I. Jialal, “Hyperglycemia induced toll like receptor 4 expression and activity in mouse mesangial cells: relevance to diabetic nephropathy,” American Journal of Physiology, vol. 303, no. 8, pp. F1145–F1150, 2012. View at Google Scholar
  82. N. Gottstein, B. A. Ewins, C. Eccleston et al., “Effect of genistein and daidzein on platelet aggregation and monocyte and endothelial function,” British Journal of Nutrition, vol. 89, no. 5, pp. 607–615, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. J. Surh, K. S. Chun, H. H. Cha et al., “Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation,” Mutation Research, vol. 480-481, pp. 243–268, 2001. View at Google Scholar · View at Scopus
  84. Y. S. Li, L. P. Wu, K. H. Li et al., “Involvement of nuclear factor κB (NF-κB) in the downregulation of cyclooxygenase-2 (COX-2) by genistein in gastric cancer cells,” Journal of International Medical Research, vol. 39, no. 6, pp. 2141–2150, 2011. View at Google Scholar
  85. K. J. Way, N. Katai, and G. L. King, “Protein kinase C and the development of diabetic vascular complications,” Diabetic Medicine, vol. 18, no. 12, pp. 945–959, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Xia, L. P. Aiello, H. Ishii et al., “Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth,” Journal of Clinical Investigation, vol. 98, no. 9, pp. 2018–2026, 1996. View at Google Scholar · View at Scopus
  87. D. J. Kelly, Y. Zhang, C. Hepper et al., “Protein kinase C β inhibition attenuates the progression of experimental diabetic nephropathy in the presence of continued hypertension,” Diabetes, vol. 52, no. 2, pp. 512–518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Malhotra, B. P. S. Kang, S. Cheung, D. Opawumi, and L. G. Meggs, “Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I,” Diabetes, vol. 50, no. 8, pp. 1918–1926, 2001. View at Google Scholar · View at Scopus
  89. N. Palanisamy and A. C. Venkataraman, “Beneficial effect of genistein on lowering blood pressure and kidney toxicity in fructose-fed hypertensive rats,” British Journal of Nutrition. In press.
  90. M. Y. Qi, Kai-Chen, H. R. Liu, Y. H. Su, and S. Q. Yu, “Protective effect of Icariin on the early stage of experimental diabetic nephropathy induced by streptozotocin via modulating transforming growth factor β1 and type IV collagen expression in rats,” Journal of Ethnopharmacology, vol. 138, no. 3, pp. 731–736, 2011. View at Google Scholar
  91. M. Anjaneyulu, A. Berent-Spillson, T. Inoue, J. Choi, K. Cherian, and J. W. Russell, “Transforming growth factor-β induces cellular injury in experimental diabetic neuropathy,” Experimental Neurology, vol. 211, no. 2, pp. 469–479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. S. Kim, N. H. Kim, D. H. Jung et al., “Genistein inhibits aldose reductase activity and high glucose-induced TGF-β2 expression in human lens epithelial cells,” European Journal of Pharmacology, vol. 594, no. 1–3, pp. 18–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. N. Behloul and G. Wu, “Genistein: a promising therapeutic agent for obesity and diabetes treatment,” European Journal of Pharmacology, vol. 698, no. 1–3, pp. 31–38, 2013. View at Google Scholar