Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 562154, 9 pages
http://dx.doi.org/10.1155/2013/562154
Research Article

Dexmedetomidine Inhibits Inflammatory Reaction in Lung Tissues of Septic Rats by Suppressing TLR4/NF-κB Pathway

1Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Tongshan Road 209, Xuzhou 221004, China
2Department of Anesthetic Pharmacology, Xuzhou Medical College, Tongshan Road 209, Xuzhou 221004, China
3The Sixth People’s Hospital of Xuzhou City, Huaihai Road, Xuzhou 221002, China
4Department of Pharmacology, School of Pharmacy, Xuzhou Medical College, Tongshan Road 209, Xuzhou 221004, China

Received 14 June 2012; Revised 29 December 2012; Accepted 20 February 2013

Academic Editor: Celeste C. Finnerty

Copyright © 2013 Yuqing Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Wakabayashi, J. A. Gelfand, W. K. Jung, R. J. Connolly, J. F. Burke, and C. A. Dinarello, “Staphylococcus epidermidis induces complement activation, tumor necrosis factor and interleukin-1, a shock-like state and tissue injury in rabbits without endotoxemia: comparison to Escherichia coli,” The Journal of Clinical Investigation, vol. 87, no. 6, pp. 1925–1935, 1991. View at Google Scholar · View at Scopus
  2. L. C. Casey, R. A. Balk, and R. C. Bone, “Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome,” Annals of Internal Medicine, vol. 119, no. 8, pp. 771–778, 1993. View at Google Scholar · View at Scopus
  3. C. Marty, B. Misset, F. Tamion, C. Fitting, J. Carlet, and J. M. Cavaillon, “Circulating interleukin-8 concentrations in patients with multiple organ failure of septic and nonseptic origin,” Critical Care Medicine, vol. 22, no. 4, pp. 673–679, 1994. View at Google Scholar · View at Scopus
  4. P. Damas, A. Reuter, P. Gysen, J. Demonty, M. Lamy, and P. Franchimont, “Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans,” Critical Care Medicine, vol. 17, no. 10, pp. 975–978, 1989. View at Google Scholar · View at Scopus
  5. P. Delong, J. A. Murray, and C. K. Cook, “Mechanical ventilation in the management of acute respiratory distress syndrome,” Seminars in Dialysis, vol. 19, no. 6, pp. 517–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. D. B. Coursin, D. B. Coursin, and G. A. Maccioli, “Dexmedetomidine,” Current Opinion in Critical Care, vol. 7, no. 4, pp. 221–226, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Taniguchi, Y. Kidani, H. Kanakura, Y. Takemoto, and K. Yamamoto, “Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats,” Critical Care Medicine, vol. 32, no. 6, pp. 1322–1326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. L. O'Neill, “The Toll/interleukin-1 receptor domain: a molecular switch for inflammation and host defence,” Biochemical Society Transactions, vol. 28, no. 5, pp. 557–563, 2000. View at Google Scholar · View at Scopus
  9. S. Akira and K. Takeda, “Toll-like receptor signalling,” Nature Reviews Immunology, vol. 4, no. 7, pp. 499–511, 2004. View at Google Scholar · View at Scopus
  10. P. A. Baeuerle and T. Henkel, “Function and activation of NF-κB in the immune system,” Annual Review of Immunology, vol. 12, pp. 141–179, 1994. View at Google Scholar · View at Scopus
  11. D. Rittirsch, M. S. Huber-Lang, M. A. Flierl, and P. A. Ward, “Immunodesign of experimental sepsis by cecal ligation and puncture,” Nature Protocols, vol. 4, no. 1, pp. 31–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. H. Yang, P. S. Tsai, T. Y. Wang, and C. J. Huang, “Dexmedetomidine-ketamine combination mitigates acute lung injury in haemorrhagic shock rats,” Resuscitation, vol. 80, no. 10, pp. 1204–1210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. L. Yang, C. H. Chen, P. S. Tsai, T. Y. Wang, and C. J. Huang, “Protective effects of dexmedetomidine-ketamine combination against ventilator-induced lung injury in endotoxemia rats,” Journal of Surgical Research, vol. 167, no. 2, pp. e273–e281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Q.-Q. Shi, H. Wang, and H. Fang, “Dose-response and mechanism of protective functions of selective alpha-2 agonist dexmedetomidine on acute lung injury in rats,” Saudi Medical Journal, vol. 33, no. 4, pp. 375–381, 2012. View at Google Scholar
  15. V. Hanci, G. Yurdakan, S. Yurtlu, I. Ö. Turan, and E. Y. Sipahi, “Protective effect of dexmedetomidine in a rat model of α- naphthylthiourea-induced acute lung injury,” Journal of Surgical Research, vol. 178, no. 1, pp. 424–430, 2012. View at Publisher · View at Google Scholar
  16. I. Bettoni, F. Comelli, C. Rossini et al., “Glial TLR4 receptor as new target to treat neuropathic pain: efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice,” GLIA, vol. 56, no. 12, pp. 1312–1319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Saito, C. I. Svensson, M. W. Buczynski et al., “Spinal glial TLR4-mediated nociception and production of prostaglandin E2 and TNF,” British Journal of Pharmacology, vol. 160, no. 7, pp. 1754–1764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. G. J. Wu, T. L. Chen, Y. F. Ueng, and R. M. Chen, “Ketamine inhibits tumor necrosis factor-α and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation,” Toxicology and Applied Pharmacology, vol. 228, no. 1, pp. 105–113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Hoshino, O. Takeuchi, T. Kawai et al., “Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide evidence for TLR4 as the Lps gene product,” The Journal of Immunology, vol. 162, no. 7, pp. 3749–3752, 1999. View at Google Scholar · View at Scopus
  20. J. Da Silva Correia, K. Soldau, U. Christen, P. S. Tobias, and R. J. Ulevitch, “Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR4 and MD-2,” The Journal of Biological Chemistry, vol. 276, no. 24, pp. 21129–21135, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Latz, A. Visintin, E. Lien et al., “Lipopolysaccharide rapidly traffics to and from the golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction,” The Journal of Biological Chemistry, vol. 277, no. 49, pp. 47834–47843, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Feng and G. D. Longmore, “The LIM protein Ajuba influences interleukin-1-induced NF-κB activation by affecting the assembly and activity of the protein kinase Cζ/p62/TRAF6 signaling complex,” Molecular and Cellular Biology, vol. 25, no. 10, pp. 4010–4022, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. P. A. Baeuerle and D. Baltimore, “IκB: a specific inhibitor of the NF-κB transcription factor,” Science, vol. 242, no. 4878, pp. 540–546, 1988. View at Google Scholar · View at Scopus
  24. M. Grilli, J. J. S. Chiu, and M. J. Lenardo, “NF-κB and Rel: participants in a multiform transcriptional regulatory system,” International Review of Cytology, vol. 143, pp. 1–62, 1993. View at Google Scholar · View at Scopus
  25. J. M. Muller, H. W. L. Ziegler-Heitbrock, and P. A. Baeuerle, “Nuclear factor kappa B, a mediator of lipopolysaccharide effects,” Immunobiology, vol. 187, no. 3–5, pp. 233–256, 1993. View at Google Scholar · View at Scopus