Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 857380, 8 pages
http://dx.doi.org/10.1155/2013/857380
Research Article

Expression of VEGF-A, Otx Homeobox and p53 Family Genes in Proliferative Vitreoretinopathy

1Department of Surgical and Morphological Sciences, Section of Ophthalmology, University of Insubria, Ospedale di Circolo, Via F. Guicciardini 9, 21100 Varese, Italy
2Department of Clinical and Experimental Medicine, University of Insubria, Via O. Rossi 9, 21100 Varese, Italy
3Ph.D. Program in Biotechnology, School of Biological and Medical Sciences, University of Insubria, Via O. Rossi 9, 21100 Varese, Italy
4Pathology Institute, Ospedale di Circolo, Via F. Guicciardini 9, 21100 Varese, Italy
5Eye Clinic, Second University of Napoli, Via S. Pansini 5, 80131 Napoli, Italy

Received 19 July 2013; Accepted 2 September 2013

Academic Editor: Mario R. Romano

Copyright © 2013 Claudio Azzolini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Charles and J. Calzada, Vitreous Microsurgery, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 5th edition, 2010.
  2. Y. I. Leiderman and J. W. Miller, “Proliferative vitreoretinopathy: pathobiology and therapeutic targets,” Seminars in Ophthalmology, vol. 24, no. 2, pp. 62–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. L. J. Ricker, A. G. H. Kessels, W. de Jager, F. Hendrikse, A. Kijlstra, and E. C. la Heij, “Prediction of proliferative vitreoretinopathy after retinal detachment surgery: potential of biomarker profiling,” The American Journal of Ophthalmology, vol. 154, no. 2, pp. 347.e2–354.e2, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Pennock, M. Rheaume, S. Mukai, and A. Kazlauskas, “A novel strategy to develop therapeutic approaches to prevent proliferative vitreoretinopathy,” The American Journal of Pathology, vol. 179, no. 6, pp. 2931–2940, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Symeonidis, E. Papakonstantinou, S. Androudi et al., “Interleukin-6 and matrix metalloproteinase expression in the subretinal fluid during proliferative vitreoretinopathy: correlation with extent, duration of RRD and PVR grade,” Cytokine, vol. 59, no. 1, pp. 184–190, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. J. G. Garweg, C. Tappeiner, and M. Halberstadt, “Pathophysiology of proliferative vitreoretinopathy in retinal detachment,” Survey of Ophthalmology, vol. 58, no. 4, pp. 321–329, 2013. View at Publisher · View at Google Scholar
  7. S. N. Moysidis, A. Thanos, and D. G. Vavvas, “Mechanisms of inflammation in proliferative vitreoretinopathy: from bench to bedside,” Mediators of Inflammation, vol. 2012, Article ID 815937, 11 pages, 2012. View at Publisher · View at Google Scholar
  8. R. Hoerster, M. M. Hermann, A. Rosentreter, P. S. Muether, B. Kirchhof, and S. Fauser, “Profibrotic cytochines in acqueous humor correlate with aqueous flare in patients with regmatogenous retinal detachment,” The British Journal of Ophthalmology, vol. 97, no. 4, pp. 450–453, 2013. View at Publisher · View at Google Scholar
  9. Retina Society Terminology Committee Classification, “The classification of retinal detachment with proliferative vitreoretinopathy,” Ophthalmology, vol. 90, no. 2, pp. 121–125, 1983. View at Google Scholar · View at Scopus
  10. A. Sadaka and G. P. Giuliari, “Proliferative vitreoretinopathy: current and emerging treatments,” Clinical Ophthalmology, vol. 6, pp. 1325–1333, 2012. View at Publisher · View at Google Scholar
  11. T. P. Stryjewski and D. G. Vavvas, “Genetic correlates of proliferative vitreoretinopathy,” Investigative Ophthalmology and Visual Science, vol. 54, no. 3, p. 1679, 2013. View at Publisher · View at Google Scholar
  12. J. Rojas, I. Fernandez, J. C. Pastor et al., “A genetic case-control study confirms the implication of SMAD7 and TNF locus in the development of proliferative vitreoretinopathy,” Investigative Ophthalmology and Visual Science, vol. 54, no. 3, pp. 1665–1678, 2013. View at Publisher · View at Google Scholar
  13. H. Yu, T. Li, X. Zou et al., “Effects of lysyl oxidase genetic variants on the susceptibility to rhegmatogenous retinal detachment and proliferative vitreoretinopathy,” Inflammation, vol. 36, no. 4, pp. 839–844, 2013. View at Publisher · View at Google Scholar
  14. R. Asato, S. Yoshida, A. Ogura et al., “Comparison of gene expression profile of epiretinal membranes obtained from eyes with proliferative vitreoretinopathy to that of secondary epiretinal membranes,” PLoS ONE, vol. 8, no. 1, Article ID e54191, 2013. View at Publisher · View at Google Scholar
  15. A. Kazlauskas, “Advances in a gene therapy-based approach to treat proliferative vitreoretinopathy,” Archivos de la Sociedad Espanola de Oftalmologia, vol. 78, no. 1, pp. 3–5, 2003. View at Google Scholar · View at Scopus
  16. S. Pastor-Idoate, I. Rodriguez-Hernández, J. Rojas et al., “The p53 codon 72 polymorphism (rs1042522) is associated with proliferative vitreoretinopathy: the retina 4 project,” Ophthalmology, vol. 120, pp. 623–628, 2013. View at Publisher · View at Google Scholar
  17. S. Pennock, D. Kim, S. Mukai et al., “Ranibizumab is a potential prophylaxis for proliferative vitreoretinopathy, a nonangiogenic blinding disease,” The American Journal of Pathology, vol. 182, no. 5, pp. 1659–1670, 2013. View at Publisher · View at Google Scholar
  18. M. F. Ghahremani, S. Goossens, and J. J. Haigh, “The p53 family and VEGF regulation: ‘It's complicated’,” Cell Cycle, vol. 12, pp. 1331–1332, 2013. View at Publisher · View at Google Scholar
  19. Y. Zhang, T. Miki, T. Iwanaga et al., “Identification, tissue expression, and functional characterization of Otx3, a novel member of the Otx family,” The Journal of Biological Chemistry, vol. 277, no. 31, pp. 28065–28069, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. P. J. Kertes and G. A. Peyman, “Drainage of subretinal fluid under silicone oil,” Canadian Journal of Ophthalmology, vol. 32, no. 7, pp. 445–446, 1997. View at Google Scholar · View at Scopus
  21. C. Azzolini, P. G. Gobbi, R. Brancato, G. Trabucchi, and M. Codenotti, “New semiconductor laser for vitreoretinal surgery,” Lasers in Surgery and Medicine, vol. 19, no. 2, pp. 177–183, 1996. View at Publisher · View at Google Scholar
  22. J. Ludbrook, “Statistics in biomedical laboratory and clinical science: applications, issues and pitfalls,” Medical Principles and Practice, vol. 17, no. 1, pp. 1–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Terrinoni, I. S. Pagani, I. Zucchi et al., “OTX1 expression in breast cancer is regulated by p53,” Oncogene, vol. 30, no. 27, pp. 3096–3103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. D. T. White and J. S. Mumm, “The nitroreductase system of inducible targeted ablation facilitates cell-specific regenerative studies in zebrafish,” Methods, vol. 13, pp. 1046–2023, 2013. View at Google Scholar
  25. D. C. Otteson and P. F. Hitchcock, “Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration,” Vision Research, vol. 43, no. 8, pp. 927–936, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. A. J. Fischer and T. A. Reh, “Müller glia are a potential source of neural regeneration in the postnatal chicken retina,” Nature Neuroscience, vol. 4, no. 3, pp. 247–252, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. L. D. Carter-Dawson and M. M. LaVail, “Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine,” Journal of Comparative Neurology, vol. 188, no. 2, pp. 263–272, 1979. View at Google Scholar · View at Scopus
  28. S. Waaijenborg and A. H. Zwinderman, “Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks,” BMC Bioinformatics, vol. 10, article 315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. R. Romano, J. Garcia-Vallejo, P. Vinciguerra, and C. Costagliola, “Thermodynamics of vitreoretinal surgery,” Current Eye Research, vol. 38, no. 3, pp. 371–374, 2013. View at Publisher · View at Google Scholar
  30. M. B. Landers III, J. S. Watson, J. N. Ulrich, and H. Quiroz-Mercado, “Determination of retinal and vitreous temperature in vitrectomy,” Retina, vol. 32, no. 1, pp. 172–176, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Klettner, H. Faby, J. Hillenkamp, and J. Roider, “Temperature-dependent vascular endothelial growth factor (VEGF) induction in human retinal pigment epithelium—implications for transpupillary thermotherapy in uveal melanoma,” Acta Ophthalmologica, vol. 90, aticle s249, 2012. View at Publisher · View at Google Scholar