Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013 (2013), Article ID 895975, 10 pages
http://dx.doi.org/10.1155/2013/895975
Research Article

JNK and NADPH Oxidase Involved in Fluoride-Induced Oxidative Stress in BV-2 Microglia Cells

Department of Occupational and Environmental Health, Liaoning Province Key Lab of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, District of Heping, No. 92 North Er Road, Shenyang, 110001, China

Received 11 February 2013; Revised 8 July 2013; Accepted 11 July 2013

Academic Editor: Muzamil Ahmad

Copyright © 2013 Ling Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Ozsvath, “Fluoride and environmental health: a review,” Reviews in Environmental Science and Biotechnology, vol. 8, no. 1, pp. 59–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Ekambaram and V. Paul, “Calcium preventing locomotor behavioral and dental toxicities of fluoride by decreasing serum fluoride level in rats,” Environmental Toxicology and Pharmacology, vol. 9, no. 4, pp. 141–146, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Paul, P. Ekambaram, and A. R. Jayakumar, “Effects of sodium fluoride on locomotor behavior and a few biochemical parameters in rats,” Environmental Toxicology and Pharmacology, vol. 6, no. 3, pp. 187–191, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Bhatnagar, P. Rao, S. Jain, and R. Bhatnagar, “Neurotoxicity of fluoride: neurodegeneration in hippocampus of female mice,” Indian Journal of Experimental Biology, vol. 40, no. 5, pp. 546–554, 2002. View at Google Scholar · View at Scopus
  5. A. L. Choi, G. Sun, Y. Zhang, and P. Grandjean, “Developmental fluoride neurotoxicity: a systematic review and meta-analysis,” Environmental Health Perspectives, vol. 120, no. 10, pp. 1362–1368, 2012. View at Google Scholar
  6. Q. Xiang, Y. Liang, L. Chen et al., “Effect of fluoride in drinking water on children's intelligence,” Fluoride, vol. 36, no. 2, pp. 84–94, 2003. View at Google Scholar · View at Scopus
  7. Q. Q. Tang, J. Du, H. H. Ma, S. J. Jiang, and X. J. Zhou, “Fluoride and children's intelligence: a meta-analysis,” Biological Trace Element Research, vol. 126, no. 1–3, pp. 115–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Zhang, A. Wang, W. He et al., “Effects of fluoride on the expression of NCAM, oxidative stress, and apoptosis in primary cultured hippocampal neurons,” Toxicology, vol. 236, no. 3, pp. 208–216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. A. Butterfield, “Oxidative stress in neurodegenerative disorders,” Antioxidants and Redox Signaling, vol. 8, no. 11-12, pp. 1971–1973, 2006. View at Google Scholar · View at Scopus
  10. D. F. Donnelly and J. L. Carroll, “Mitochondrial function and carotid body transduction,” High Altitude Medicine & Biology, vol. 6, no. 2, pp. 121–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. N. J. Chinoy and T. N. Patel, “The influence of fluoride and/or aluminium on free radical toxicity in the brain of female mice and beneficial effects of some anti-dotes,” Fluoride, vol. 33, no. 1, p. S8, 2000. View at Google Scholar
  12. N. V. Georgieva, “Oxidative stress as a factor of disrupted ecological oxidative balance in biological systems—a review,” Bulgarian Journal of Veterinary Medicine, vol. 8, pp. 1–11, 2005. View at Google Scholar
  13. X. Shuhua, L. Ziyou, Y. Ling, W. Fei, and S. Guifan, “A role of fluoride on free radical generation and oxidative stress in BV-2 microGlia cells,” Mediators of Inflammation, vol. 2012, Article ID 102954, 8 pages, 2012. View at Publisher · View at Google Scholar
  14. F. Aloisi, “Immune function of microGlia,” Glia, vol. 36, no. 2, pp. 165–179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. R. B. Rock, G. Gekker, S. Hu et al., “Role of microGlia in central nervous system infections,” Clinical Microbiology Reviews, vol. 17, no. 4, pp. 942–964, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. P. L. McGeer, S. Itagaki, B. E. Boyes, and E. G. McGeer, “Reactive microGlia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains,” Neurology, vol. 38, no. 8, pp. 1285–1291, 1988. View at Google Scholar · View at Scopus
  17. D. Giulian, L. J. Haverkamp, J. Li et al., “Senile plaques stimulate microGlia to release a neurotoxin found in Alzheimer brain,” Neurochemistry International, vol. 27, no. 1, pp. 119–137, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Rockwell, J. Martinez, L. Papa, and E. Gomes, “Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium,” Cellular Signalling, vol. 16, no. 3, pp. 343–353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Svensson, S. Z. Fernaeus, K. Part, K. Reis, and T. Land, “LPS-induced iNOS expression in Bv-2 cells is suppressed by an oxidative mechanism acting on the JNK pathway—a potential role for neuroprotection,” Brain Research, vol. 1322, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Pocivavsek, M. P. Burns, and G. W. Rebeck, “Low-density lipoprotein receptors regulate microGlial inflammation through c-Jun N-terminal kinase,” Glia, vol. 57, no. 4, pp. 444–453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Emre, C. Hurtaud, T. Nübel, F. Criscuolo, D. Ricquier, and A.-M. Cassard-Doulcier, “Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages,” Biochemical Journal, vol. 402, no. 2, pp. 271–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. E. V. Thrane, M. Refsnes, G. H. Thoresen, M. Lag, and P. E. Schwarze, “Fluoride-induced apoptosis in epithelial lung cells involves activation of MAP kinases p38 and possibly JNK,” Toxicological Sciences, vol. 61, no. 1, pp. 83–91, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Refsnes, T. Skuland, P. E. Schwarze, J. Ovrevik, and M. Lag, “Fluoride-induced IL-8 release in human epithelial lung cells: relationship to EGF-receptor-, SRC- and MAP-kinase activation,” Toxicology and Applied Pharmacology, vol. 227, no. 1, pp. 56–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Refsnes, E. V. Thrane, M. Lag, G. Hege Thoresen, and P. E. Schwarze, “Mechanisms in fluoride-induced interleukin-8 synthesis in human lung epithelial cells,” Toxicology, vol. 167, no. 2, pp. 145–158, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Yuan, C. N. Perry, C. Huang et al., “LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection,” American Journal of Physiology, vol. 296, no. 2, pp. H470–H479, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Bruce, “Fluoride and intelligence,” Fluoride, vol. 33, no. 2, pp. 49–52, 2000. View at Google Scholar · View at Scopus
  27. L. R. Chioca, I. M. Raupp, C. Da Cunha, E. M. Losso, and R. Andreatini, “Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats,” European Journal of Pharmacology, vol. 579, no. 1–3, pp. 196–201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. E. A. García-Montalvo, H. Reyes-Pérez, and L. M. Del Razo, “Fluoride exposure impairs glucose tolerance via decreased insulin expression and oxidative stress,” Toxicology, vol. 263, no. 2-3, pp. 75–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. A. Izquierdo-Vega, M. Sánchez-Gutiérrez, and L. M. Del Razo, “Decreased in vitro fertility in male rats exposed to fluoride-induced oxidative stress damage and mitochondrial transmembrane potential loss,” Toxicology and Applied Pharmacology, vol. 230, no. 3, pp. 352–357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. D. Kraft and G. Jean Harry, “Features of microGlia and neuroinflammation relevant to environmental exposure and neurotoxicity,” International Journal of Environmental Research and Public Health, vol. 8, no. 7, pp. 2980–3018, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. C. C. Chao, S. Hu, L. Ehrlich, and P. K. Peterson, “Interleukin-1 and tumor necrosis factor-α synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors,” Brain, Behavior, and Immunity, vol. 9, no. 4, pp. 355–365, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. L.-J. Chew, A. Takanohashi, and M. Bell, “MicroGlia and inflammation: impact on developmental brain injuries,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 12, no. 2, pp. 105–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Irani, “Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling,” Circulation Research, vol. 87, no. 3, pp. 179–183, 2000. View at Google Scholar · View at Scopus
  34. N. R. Bhat, P. Zhang, J. C. Lee, and E. L. Hogan, “Extracellular signal-regulated kinase and p38 subgroups of mitogen- activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-α gene expression in endotoxin-stimulated primary Glial cultures,” Journal of Neuroscience, vol. 18, no. 5, pp. 1633–1641, 1998. View at Google Scholar · View at Scopus
  35. U. Hidding, K. Mielke, V. Waetzig et al., “The c-Jun N-terminal kinases in cerebral microGlia: immunological functions in the brain,” Biochemical Pharmacology, vol. 64, no. 5-6, pp. 781–788, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. A. S. Baldwin Jr., “The transcription factor NF-κB and human disease,” Journal of Clinical Investigation, vol. 107, no. 1, pp. 3–6, 2001. View at Google Scholar · View at Scopus
  37. B. Chandrasekar and G. L. Freeman, “Induction of nuclear factor κB and activation protein 1 in postischemic myocardium,” FEBS Letters, vol. 401, no. 1, pp. 30–34, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Chen, T. B. Gibson, F. Robinson et al., “MAP kinases,” Chemical Reviews, vol. 101, no. 8, pp. 2449–2476, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Kyriakis and J. Avruch, “Sounding the alarm: protein kinase cascades activated by stress and inflammation,” Journal of Biological Chemistry, vol. 271, no. 40, pp. 24313–24316, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. K. H. Lau and D. J. Baylink, “Molecular mechanism of action of fluoride on bone cells,” Journal of Bone and Mineral Research, vol. 13, no. 11, pp. 1660–1667, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Karmann, W. Min, W. C. Fanslow, and J. S. Pober, “Activation and homologous desensitization of human endothelial cells by CD40 ligand, tumor necrosis factor, and interleukin 1,” Journal of Experimental Medicine, vol. 184, no. 1, pp. 173–182, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. J. A. McCubrey, M. M. LaHair, and R. A. Franklin, “Reactive oxygen species-induced activation of the MAP kinase signaling pathways,” Antioxidants & Redox Signaling, vol. 8, no. 9-10, pp. 1775–1789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Torres and H. J. Forman, “Redox signaling and the MAP kinase pathways,” Biofactors, vol. 17, no. 1–4, pp. 287–296, 2003. View at Google Scholar · View at Scopus
  44. R. J. Reiter, D. Melchiorri, E. Sewerynek et al., “A review of the evidence supporting melatonin's role as an antioxidant,” Journal of Pineal Research, vol. 18, no. 1, pp. 1–11, 1995. View at Google Scholar · View at Scopus
  45. R. Agrawal, E. Tyagi, R. Shukla, and C. Nath, “Effect of insulin and melatonin on acetylcholinesterase activity in the brain of amnesic mice,” Behavioural Brain Research, vol. 189, no. 2, pp. 381–386, 2008. View at Publisher · View at Google Scholar · View at Scopus