Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 931562, 9 pages
http://dx.doi.org/10.1155/2013/931562
Research Article

Inflammatory Mediator Profiling Reveals Immune Properties of Chemotactic Gradients and Macrophage Mediator Production Inhibition during Thioglycollate Elicited Peritoneal Inflammation

Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA

Received 28 December 2012; Revised 17 February 2013; Accepted 24 February 2013

Academic Editor: Miao Wang

Copyright © 2013 Derek Lam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. E. McGrath, H. M. Marriott, A. Lawrie, S. E. Francis, and I. Sabroe, “TNF-related apoptosis-inducing ligand (TRAIL) regulates inflammatory neutrophil apoptosis and enhances resolution of inflammation,” Journal of Leukocyte Biology, vol. 90, pp. 855–865, 2011. View at Google Scholar
  2. H. W. Kim, Q. Chan, S. E. Afton et al., “Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds,” Inflammation, vol. 35, pp. 167–175, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Broche and J. M. Tellado, “Defense mechanisms of the peritoneal cavity,” Current Opinion in Critical Care, vol. 7, no. 2, pp. 105–116, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Williams, N. J. Wagner, H. S. Earp, B. J. Vilen, and G. K. Matsushima, “Increased hematopoietic cells in the mertk-/- mouse peritoneal cavity: a result of augmented migration,” Journal of Immunology, vol. 184, no. 12, pp. 6637–6648, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Moro, T. Yamada, M. Tanabe et al., “Innate production of TH 2 cytokines by adipose tissue-associated c-Kit+ Sca-1+ lymphoid cells,” Nature, vol. 463, no. 7280, pp. 540–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Topley, Z. Brown, A. Jorres et al., “Human peritoneal mesothelial cells synthesize interleukin-8: synergistic induction by interleukin-1β and tumor necrosis factor-α,” American Journal of Pathology, vol. 142, no. 6, pp. 1876–1886, 1993. View at Google Scholar · View at Scopus
  7. N. Topley, T. Liberek, A. Davenport, F. K. Li, H. Fear, and J. D. Williams, “Activation of inflammation and leukocyte recruitment into the peritoneal cavity,” Kidney International, vol. 50, no. 56, pp. S17–S21, 1996. View at Google Scholar · View at Scopus
  8. M. N. Ajuebor, A. M. Das, L. Virág, R. J. Flower, C. Szabó, and M. Perretti, “Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10,” Journal of Immunology, vol. 162, no. 3, pp. 1685–1691, 1999. View at Google Scholar · View at Scopus
  9. M. J. Melnicoff, P. K. Horan, and P. S. Morahan, “Kinetics of changes in peritoneal cell populations following acute inflammation,” Cellular Immunology, vol. 118, no. 1, pp. 178–191, 1989. View at Google Scholar · View at Scopus
  10. G. J. Bellingan, H. Caldwell, S. E. M. Howie, I. Dransfield, and C. Haslett, “In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes,” Journal of Immunology, vol. 157, no. 6, pp. 2577–2585, 1996. View at Google Scholar · View at Scopus
  11. A. Casrouge, J. Decalf, M. Ahloulay et al., “Evidence for an antagonist form of the chemokine CXCL10 in patients chronically infected with HCV,” Journal of Clinical Investigation, vol. 121, no. 1, pp. 308–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. B. Joseph, M. N. Bradley, A. Castrillo et al., “LXR-dependent gene expression is important for macrophage survival and the innate immune response,” Cell, vol. 119, no. 2, pp. 299–309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. C. C. J. Zavitz, C. M. T. Bauer, G. J. Gaschler et al., “Dysregulated macrophage-inflammatory protein-2 expression drives illness in bacterial superinfection of influenza,” Journal of Immunology, vol. 184, no. 4, pp. 2001–2013, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Blumberg, H. Dinh, E. S. Trueblood et al., “Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation,” Journal of Experimental Medicine, vol. 204, no. 11, pp. 2603–2614, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. F. Camargo, M. P. Quinones, S. Mummidi et al., “CCR5 expression levels influence NFAT translocation, IL-2 production, and subsequent signaling events during T lymphocyte activation,” Journal of Immunology, vol. 182, no. 1, pp. 171–182, 2009. View at Google Scholar · View at Scopus
  16. K. Wiege, D. D. Le, S. N. Syed, S. R. Ali, and A. Novakovic, “Defective macrophage migration in Gαi2- but not Gαi3-deficient mice,” The Journal of Immunology, vol. 189, pp. 980–987, 2012. View at Google Scholar
  17. H. Block, K. Ley, and A. Zarbock, “Severe impairment of leukocyte recruitment in ppGalNAcT-1-deficient mice,” The Journal of Immunology, vol. 188, pp. 5674–5681, 2012. View at Google Scholar
  18. H. Block, J. M. Herter, J. Rossaint, A. Stadtmann, and S. Kliche, “Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury,” The Journal of Experimental Medicine, vol. 209, pp. 407–421, 2012. View at Google Scholar
  19. J. Michaud, D. S. Im, and T. Hla, “Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation,” Journal of Immunology, vol. 184, no. 3, pp. 1475–1483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. E. F. Foxman, J. J. Campbell, and E. C. Butcher, “Multistep navigation and the combinatorial control of leukocyte chemotaxis,” Journal of Cell Biology, vol. 139, no. 5, pp. 1349–1360, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. D. C. Cara, J. Kaur, M. Forster, D. M. McCafferty, and P. Kubes, “Role of p38 mitogen-activated protein kinase in chemokine-induced emigration and chemotaxis in vivo,” Journal of Immunology, vol. 167, no. 11, pp. 6552–6558, 2001. View at Google Scholar · View at Scopus
  22. V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson, “Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF,” Journal of Clinical Investigation, vol. 101, no. 4, pp. 890–898, 1998. View at Google Scholar · View at Scopus
  23. H. Wan, J. M. C. Coppens, C. G. Van Helden-Meeuwsen et al., “Chorionic gonadotropin alleviates thioglycollate-induced peritonitis by affecting macrophage function,” Journal of Leukocyte Biology, vol. 86, no. 2, pp. 361–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. C. N. Serhan, S. D. Brain, C. D. Buckley et al., “Resolution of inflammation: state of the art, definitions and terms,” FASEB Journal, vol. 21, no. 2, pp. 325–332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. P. J. Little, A. Chait, and A. Bobik, “Cellular and cytokine-based inflammatory processes as novel therapeutic targets for the prevention and treatment of atherosclerosis,” Pharmacology and Therapeutics, vol. 131, no. 3, pp. 255–268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Srinivas, P. Anversa, and W. H. Frishman, “Cytokines and myocardial regeneration: a novel treatment option for acute myocardial infarction,” Cardiology in Review, vol. 17, pp. 1–9, 2009. View at Google Scholar
  27. X. Li, D. Mikhalkova, E. Gao et al., “Myocardial injury after ischemia-reperfusion in mice deficient in Akt2 is associated with increased cardiac macrophage density,” American Journal of Physiology, Heart and Circulatory Physiology, vol. 301, pp. H1932–H1940, 2011. View at Google Scholar
  28. K. Tsujita, K. Kaikita, T. Hayasaki et al., “Targeted deletion of class A macrophage scavenger receptor increases the risk of cardiac rupture after experimental myocardial infarction,” Circulation, vol. 115, no. 14, pp. 1904–1911, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. C. Levin, P. Jirholt, A. Wramstedt, M. E. Johansson, and A. M. Lundberg, “Rip2 deficiency leads to increased atherosclerosis despite decreased inflammation,” Circulation Research, vol. 109, pp. 1210–1218, 2011. View at Google Scholar
  30. V. P. Yakubenko, A. Bhattacharjee, E. Pluskota, and M. K. Cathcart, “αmβ2 integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation,” Circulation Research, vol. 108, no. 5, pp. 544–554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Keul, S. Lucke, K. Von Wnuck Lipinski et al., “Sphingosine-1-Phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis,” Circulation Research, vol. 108, no. 3, pp. 314–323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. T. A. Pagler, M. Wang, M. Mondal et al., “Deletion of ABCA1 and ABCG1 impairs macrophage migration because of increased Rac1 signaling,” Circulation Research, vol. 108, no. 2, pp. 194–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Yvan-Charvet, T. A. Pagler, T. A. Seimon et al., “ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis,” Circulation Research, vol. 106, no. 12, pp. 1861–1869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Wang, W. Jin, and D. J. Rader, “Upregulation of macrophage endothelial lipase by toll-like receptors 4 and 3 modulates macrophage interleukin-10 and -12 production,” Circulation Research, vol. 100, no. 7, pp. 1008–1015, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. R. Mackay, “Moving targets: cell migration inhibitors as new anti-inflammatory therapies,” Nature Immunology, vol. 9, no. 9, pp. 988–998, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Friedl and B. Weigelin, “Interstitial leukocyte migration and immune function,” Nature Immunology, vol. 9, no. 9, pp. 960–969, 2008. View at Publisher · View at Google Scholar · View at Scopus