Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013 (2013), Article ID 946878, 11 pages
http://dx.doi.org/10.1155/2013/946878
Research Article

Proinflammatory Responses of Heme in Alveolar Macrophages: Repercussion in Lung Hemorrhagic Episodes

1Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Avenida 28 de Setembro, 87 Fundos, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
2Pesquisa e Inovação, Farmanguinhos, Fiocruz, Rio de Janeiro, Brazil
3Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 22541-900 Rio de Janeiro, RJ, Brazil
4Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Received 6 December 2012; Revised 4 March 2013; Accepted 19 March 2013

Academic Editor: Muzamil Ahmad

Copyright © 2013 Rafael L. Simões et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Yang, D. J. Haile, F. G. Berger, D. C. Herbert, E. van Beveren, and A. J. Ghio, “Haptoglobin reduces lung injury associated with exposure to blood,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 284, no. 2, pp. L402–L409, 2003. View at Google Scholar · View at Scopus
  2. A. J. Ghio, J. H. Richards, K. M. Crissman, and J. D. Carter, “Iron disequilibrium in the rat lung after instilled blood,” Chest, vol. 118, no. 3, pp. 814–823, 2000. View at Google Scholar · View at Scopus
  3. T. Takahashi, H. Shimizu, H. Morimatsu et al., “Heme oxygenase-1 is an essential cytoprotective component in oxidative tissue injury induced by hemorrhagic shock,” Journal of Clinical Biochemistry and Nutrition, vol. 44, no. 1, pp. 28–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. U. Muller-Eberhard and M. Fraig, “Bioactivity of heme and its containment,” American Journal of Hematology, vol. 42, no. 1, pp. 59–62, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. R. D. Davenport and S. L. Kunkel, “Cytokine roles in hemolytic and nonhemolytic transfusion reactions,” Transfusion Medicine Reviews, vol. 8, no. 3, pp. 157–168, 1994. View at Google Scholar · View at Scopus
  6. M. S. Gonçalves, I. L. Queiroz, S. A. Cardoso et al., “Interleukin 8 as a vaso-occlusive marker in Brazilian patients with sickle cell disease,” Brazilian Journal of Medical and Biological Research, vol. 34, no. 10, pp. 1309–1313, 2001. View at Google Scholar · View at Scopus
  7. T. Wun, “The role of inflammation and leukocytes in the pathogenesis of sickle cell disease,” Hematology, vol. 5, no. 5, pp. 403–412, 2001. View at Google Scholar · View at Scopus
  8. M. A. Arruda, A. G. Rossi, M. S. de Freitas, C. Barja-Fidalgo, and A. V. Graça-Souza, “Heme inhibits human neutrophil apoptosis: Involvement of phosphoinositide 3-kinase, MAPK, and NF-κB,” Journal of Immunology, vol. 173, no. 3, pp. 2023–2030, 2004. View at Google Scholar · View at Scopus
  9. R. T. Figueiredo, P. L. Fernandez, D. S. Mourao-Sa et al., “Characterization of heme as activator of toll-like receptor 4,” Journal of Biological Chemistry, vol. 282, no. 28, pp. 20221–20229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Morse, L. Lin, A. M. K. Choi, and S. W. Ryter, “Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease,” Free Radical Biology and Medicine, vol. 47, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. G. M. Vercellotti, G. Balla, J. Balla, K. Nath, J. W. Eaton, and H. S. Jacob, “Heme and the vasculature: an oxidative hazard that induces antioxidant defenses in the endothelium,” Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, vol. 22, no. 2, pp. 207–213, 1994. View at Google Scholar · View at Scopus
  12. A. P. T. Monteiro, C. S. Pinheiro, T. Luna-Gomes et al., “Leukotriene B4 mediates neutrophil migration induced by heme,” Journal of Immunology, vol. 186, no. 11, pp. 6562–6567, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. B. Fortes, L. S. Alves, R. de Oliveira et al., “Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production,” Blood, vol. 119, pp. 102368–102375, 2012. View at Google Scholar
  14. B. N. Porto, L. S. Alves, P. L. Fernández et al., “Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors,” Journal of Biological Chemistry, vol. 282, no. 33, pp. 24430–24436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. L. Fernandez, F. F. Dutra, L. Alves et al., “Heme amplifies the innate immune response to microbial molecules through spleen tyrosine kinase (Syk)-dependent reactive oxygen species generation,” Journal of Biological Chemistry, vol. 285, no. 43, pp. 32844–32851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. L. Lohmann-Matthes, C. Steinmuller, and G. Franke-Ullmann, “Pulmonary macrophages,” European Respiratory Journal, vol. 7, no. 9, pp. 1678–1689, 1994. View at Google Scholar · View at Scopus
  17. B. M. Babior, “NADPH oxidase: an update,” Blood, vol. 93, no. 5, pp. 1464–1476, 1999. View at Google Scholar · View at Scopus
  18. D. Rotrosen, C. L. Yeung, and J. P. Katkin, “Production of recombinant cytochrome b558 allows reconstitution of the phagocyte NADPH oxidase solely from recombinant proteins,” Journal of Biological Chemistry, vol. 268, no. 19, pp. 14256–14260, 1993. View at Google Scholar · View at Scopus
  19. P. G. Heyworth, J. T. Curnutte, W. M. Nauseef et al., “Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558,” Journal of Clinical Investigation, vol. 87, no. 1, pp. 352–356, 1991. View at Google Scholar · View at Scopus
  20. S. J. Chanock, J. el Benna, R. M. Smith, and B. M. Babior, “The respiratory burst oxidase,” The Journal of Biological Chemistry, vol. 269, pp. 24519–24522, 1994. View at Google Scholar
  21. M. Sathyamoorthy, I. de Mendez, A. G. Adams, and T. L. Leto, “p40phox down-regulates NADPH oxidase activity through interactions with its SH3 domain,” Journal of Biological Chemistry, vol. 272, no. 14, pp. 9141–9146, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. J. B. Weinberg, M. A. Misukonis, P. J. Shami et al., “Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages,” Blood, vol. 86, no. 3, pp. 1184–1195, 1995. View at Google Scholar · View at Scopus
  23. R. L. Warner, R. Paine III, P. J. Christensen et al., “Lung sources and cytokine requirements for in vivo expression of inducible nitric oxide synthase,” American Journal of Respiratory Cell and Molecular Biology, vol. 12, no. 6, pp. 649–661, 1995. View at Google Scholar · View at Scopus
  24. K. S. Farley, L. F. Wang, H. M. Razavi et al., “Effects of macrophage inducible nitric oxide synthase in murine septic lung injury,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 290, no. 6, pp. L1164–L1172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. D. L. Laskin, V. R. Sunil, C. R. Gardner, and J. D. Laskin, “Macrophages and tissue injury: agents of defense or destruction?” Annual Review of Pharmacology and Toxicology, vol. 51, pp. 267–288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. V. Graça-Souza, M. A. B. Arruda, M. S. de Freitas, C. Barja-Fidalgo, and P. L. Oliveira, “Neutrophil activation by heme: implications for inflammatory processes,” Blood, vol. 99, no. 11, pp. 4160–4165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Arruda, P. Barcellos-de-Souza, A. L. F. Sampaio, A. G. Rossi, A. V. Graça-Souza, and C. Barja-Fidalgo, “NADPH oxidase-derived ROS: key modulators of heme-induced mitochondrial stability in human neutrophils,” Experimental Cell Research, vol. 312, no. 19, pp. 3939–3948, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Reiterer, M. Toborek, and B. Hennig, “Quercetin protects against linoleic acid-induced porcine endothelial cell dysfunction,” Journal of Nutrition, vol. 134, no. 4, pp. 771–775, 2004. View at Google Scholar · View at Scopus
  29. P. Mancuso and M. Peters-Golden, “Modulation of alveolar macrophage phagocytosis by leukotrienes is Fc receptor-mediated and protein kinase C-dependent,” American Journal of Respiratory Cell and Molecular Biology, vol. 23, no. 6, pp. 727–733, 2000. View at Google Scholar · View at Scopus
  30. P. Barcellos-de-Souza, C. Canetti, C. Barja-Fidalgo, and M. A. Arruda, “Leukotriene B4inhibits neutrophil apoptosis via NADPH oxidase activity: redox control of NF-κB pathway and mitochondrial stability,” Biochimica et Biophysica Acta, vol. 1823, pp. 1990–1997, 2012. View at Google Scholar
  31. R. L. Simões and I. M. Fierro, “Involvement of the Rho-kinase/myosin light chain kinase pathway on human monocyte chemotaxis induced by ATL-1, an aspirin-triggered lipoxin A4 synthetic analog,” Journal of Immunology, vol. 175, no. 3, pp. 1843–1850, 2005. View at Google Scholar · View at Scopus
  32. S. V. Silva, E. P. Garcia-Souza, A. S. Moura, and C. Barja-Fidalgo, “Maternal protein restriction during early lactation induces changes on neutrophil activation and TNF-α production of adult offspring,” Inflammation, vol. 33, no. 2, pp. 65–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  34. C. Smacchia, P. Rebulla, F. Drago, F. Morelati, M. Pappalettera, and G. Sirchia, “A micro colorimetric assay using cryopreserved monocytes to evaluate antibody-mediated red cell-monocyte interaction,” Haematologica, vol. 82, no. 5, pp. 526–531, 1997. View at Google Scholar · View at Scopus
  35. N. Araki, M. T. Johnson, and J. A. Swanson, “A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages,” Journal of Cell Biology, vol. 135, no. 5, pp. 1249–1260, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Peck, “A one-plate assay for macrophage bactericidal activity,” Journal of Immunological Methods, vol. 82, no. 1, pp. 131–140, 1985. View at Google Scholar · View at Scopus
  37. M. Yamamoto, N. Hayashi, and G. Kikuchi, “Evidence for the transcriptional inhibition by heme of the synthesis of δ-aminolevulinate synthase in rat liver,” Biochemical and Biophysical Research Communications, vol. 105, no. 3, pp. 985–990, 1982. View at Google Scholar · View at Scopus
  38. T. S. Lee and L. Y. Chau, “Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice,” Nature Medicine, vol. 8, no. 3, pp. 240–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Kubota, Y. Iwasaki, H. Harada et al., “Role of alveolar macrophages in Candida-induced acute lung injury,” Clinical and Diagnostic Laboratory Immunology, vol. 8, no. 6, pp. 1258–1262, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Howard and A. O'Garra, “Biological properties of interleukin 10,” Immunology Today, vol. 13, no. 6, pp. 198–200, 1992. View at Google Scholar · View at Scopus
  41. K. W. Moore, A. O'Garra, R. D. W. Malefyt, P. Vieira, and R. Mosmann, “Interleukin-10,” Annual Review of Immunology, vol. 11, pp. 165–190, 1993. View at Google Scholar · View at Scopus
  42. A. M. K. Choi and J. Alam, “Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury,” American Journal of Respiratory Cell and Molecular Biology, vol. 15, no. 1, pp. 9–19, 1996. View at Google Scholar · View at Scopus
  43. D. Morse and A. M. K. Choi, “Heme oxygenase-1: the “emerging molecule” has arrived,” American Journal of Respiratory Cell and Molecular Biology, vol. 27, no. 1, pp. 8–16, 2002. View at Google Scholar · View at Scopus
  44. W. W. Hancock, R. Buelow, M. H. Sayegh, and L. A. Turka, “Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes,” Nature Medicine, vol. 4, no. 12, pp. 1392–1396, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Tamion, V. Richard, G. Bonmarchand, J. Leroy, J. P. Lebreton, and C. Thuillez, “Induction of heme-oxygenase-1 prevents the systemic responses to hemorrhagic shock,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 10, pp. 1933–1938, 2001. View at Google Scholar · View at Scopus
  46. R. H. Shih, S. E. Cheng, L. D. Hsiao, Y. R. Kou, and C. M. Yang, “Cigarette smoke extract upregulates heme oxygenase-1 via PKC/NADPH oxidase/ROS/PDGFR/PI3K/Akt pathway in mouse brain endothelial cells,” Journal of Neuroinflammation, vol. 8, article 104, 2011. View at Google Scholar
  47. M. A. Arruda and C. Barja-Fidalgo, “NADPH oxidase activity: in the crossroad of neutrophil life and death,” Frontiers in Bioscience, vol. 14, no. 12, pp. 4546–4556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. J. A. Moraes, P. Barcellos-de-Souza, G. Rodrigues et al., “Heme modulates smooth muscle cell proliferation and migration via NADPH oxidase: a counter-regulatory role for heme oxygenase system,” Atherosclerosis, vol. 224, no. 2, pp. 394–400, 2012. View at Publisher · View at Google Scholar
  49. F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, “Macrophage activation and polarization,” Frontiers in Bioscience, vol. 13, no. 2, pp. 453–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. J. D. Laskin, D. E. Heck, and D. L. Laskin, “Nitric oxide pathways in toxic responses,” in General and Applied Toxicology, B. Ballantyne, T. Marrs, and T. Syversen, Eds., pp. 425–438, John Wiley & Sons, Hoboken, NJ, USA, 2009. View at Google Scholar