Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013 (2013), Article ID 953841, 19 pages
http://dx.doi.org/10.1155/2013/953841
Research Article

Ubiquitous Transgenic Overexpression of C-C Chemokine Ligand 2: A Model to Assess the Combined Effect of High Energy Intake and Continuous Low-Grade Inflammation

1Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
2Campus of International Excellence Southern Catalonia, Spain
3Catalan Institute of Oncology and Girona Biomedical Research Institute, Avda de Francia s/n, 17007 Girona, Spain
4Department of Pathology, Hospital Universitari Joan XXIII, C/ Dr. Mallafrè Guasch 4, 43005 Tarragona, Spain
5Department of Vascular Surgery, Hospital Universitari Joan XXIII, C/ Dr. Mallafrè Guasch 4, 43005 Tarragona, Spain
6Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
7Servei de Medicina Interna, Hospital Sant Pau i Santa Tecla, Rambla Vella 14, 43003 Tarragona, Spain

Received 22 July 2013; Revised 30 September 2013; Accepted 15 October 2013

Academic Editor: Donna-Marie McCafferty

Copyright © 2013 Esther Rodríguez-Gallego et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Cecchini, F. Sassi, J. A. Lauer, Y. Y. Lee, V. Guajardo-Barron, and D. Chisholm, “Tackling of unhealthy diets, physical inactivity, and obesity: Health effects and cost-effectiveness,” The Lancet, vol. 376, no. 9754, pp. 1775–1784, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Strong, C. Mathers, S. Leeder, and R. Beaglehole, “Preventing chronic diseases: how many lives can we save?” The Lancet, vol. 366, no. 9496, pp. 1578–1582, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Hernández-Aguilera, A. Rull, E. Rodríguez-Gallego et al., “Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities,” Mediators of Inflammation, vol. 2013, Article ID 135698, 13 pages, 2013. View at Publisher · View at Google Scholar
  4. J. Joven, A. Rull, E. Rodríguez-Gallego et al., “Multifunctional targets of dietary polyphenols in disease: a case for the chemokine network and energy metabolism,” Food and Chemical Toxicology, vol. 51, pp. 267–279, 2012. View at Google Scholar
  5. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Joven, A. Rull, N. Ferré et al., “The results in rodent models of atherosclerosis are not interchangeable. The influence of diet and strain,” Atherosclerosis, vol. 195, no. 2, pp. e85–e92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Coll, C. Alonso-Villaverde, and J. Joven, “Monocyte chemoattractant protein-1 and atherosclerosis: is there room for an additional biomarker?” Clinica Chimica Acta, vol. 383, no. 1-2, pp. 21–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Rull, J. Camps, C. Alonso-Villaverde, and J. Joven, “Insulin resistance, inflammation, and obesity: role of monocyte chemoattractant protein-1 (orCCL2) in the regulation of metabolism,” Mediators of Inflammation, vol. 2010, Article ID 326580, 11 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Rull, J. C. Escolà-Gil, J. Julve et al., “Deficiency in monocyte chemoattractant protein-1 modifies lipid and glucose metabolism,” Experimental and Molecular Pathology, vol. 83, no. 3, pp. 361–366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Kanda, S. Tateya, Y. Tamori et al., “MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity,” The Journal of Clinical Investigation, vol. 116, no. 6, pp. 1494–1505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Kamei, K. Tobe, R. Suzuki et al., “Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance,” The Journal of Biological Chemistry, vol. 281, no. 36, pp. 26602–26614, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Rius, C. López-Vicario, A. González-Périz et al., “Resolution of inflammation in obesity-induced liver disease,” Frontiers in Immunology, vol. 3, article 257, 7 pages, 2012. View at Google Scholar
  13. A. Paul, L. Calleja, J. Camps et al., “The continuous administration of aspirin attenuates atherosclerosis in apolipoprotein E-deficient mice,” Life Sciences, vol. 68, no. 4, pp. 457–465, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. S. A. Lira, M. E. Fuentes, R. M. Strieter, and S. K. Durham, “Transgenic methods to study chemokine function in lung and central nervous system,” Methods in Enzymology, vol. 287, pp. 304–318, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. M. E. Fuentes, S. K. Durham, M. R. Swerdel et al., “Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1,” The Journal of Immunology, vol. 155, no. 12, pp. 5769–5776, 1995. View at Google Scholar · View at Scopus
  16. S. M. Stamatovic, P. Shakui, R. F. Keep et al., “Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability,” Journal of Cerebral Blood Flow and Metabolism, vol. 25, no. 5, pp. 593–606, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Toft-Hansen, R. Buist, X. Sun, A. Schellenberg, J. Peeling, and T. Owens, “Metalloproteinases control brain inflammation induced by pertussis toxin in mice overexpressing the chemokine CCL2 in the central nervous system,” The Journal of Immunology, vol. 177, no. 10, pp. 7242–7249, 2006. View at Google Scholar · View at Scopus
  18. F. Rodríguez-Sanabria, A. Rull, R. Beltrán-Debón et al., “Tissue distribution and expression of paraoxonases and chemokines in mouse: the ubiquitous and joint localisation suggest a systemic and coordinated role,” Journal of Molecular Histology, vol. 41, no. 6, pp. 379–386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Tous, N. Ferré, A. Rull et al., “Dietary cholesterol and differential monocyte chemoattractant protein-1 gene expression in aorta and liver of apo E-deficient mice,” Biochemical and Biophysical Research Communications, vol. 340, no. 4, pp. 1078–1084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Le, S. Gagneten, T. Larson et al., “Far-upstream elements are dispensable for tissue-specific proenkephalin expression using a Cre-mediated knock-in strategy,” Journal of Neurochemistry, vol. 84, no. 4, pp. 689–697, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. W. C. Kisseberth, N. T. Brettingen, J. K. Lohse, and E. P. Sandgren, “Ubiquitous expression of marker transgenes in mice and rats,” Developmental Biology, vol. 214, no. 1, pp. 128–138, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Strathdee, H. Ibbotson, and S. G. N. Grant, “Expression of transgenes targeted to the Gt(ROSA)26Sor locus is orientation dependent,” PLoS ONE, vol. 1, no. 1, article e4, 9 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Rull, G. Aragonès, R. Beltrán-Debón et al., “Exploring PPAR modulation in experimental mice,” Methods in Molecular Biology, vol. 952, pp. 253–273, 2013. View at Google Scholar
  24. B. P. Zambrowicz, A. Imamoto, S. Fiering, L. A. Herzenberg, W. G. Kerr, and P. Soriano, “Disruption of overlapping transcripts in the ROSA βgeo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 3789–3794, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Irion, H. Luche, P. Gadue, H. J. Fehling, M. Kennedy, and G. Keller, “Identification and targeting of the ROSA26 locus in human embryonic stem cells,” Nature Biotechnology, vol. 25, no. 12, pp. 1477–1482, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. R. Capecchi, “Altering the genome by homologous recombination,” Science, vol. 244, no. 4910, pp. 1288–1292, 1989. View at Google Scholar · View at Scopus
  27. A. Bradley, M. Evans, M. H. Kaufman, and E. Robertson, “Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines,” Nature, vol. 309, no. 5965, pp. 255–256, 1984. View at Google Scholar · View at Scopus
  28. T. Doetschman, R. G. Gregg, N. Maeda et al., “Targetted correction of a mutant HPRT gene in mouse embryonic stem cells,” Nature, vol. 330, no. 6148, pp. 576–578, 1987. View at Google Scholar · View at Scopus
  29. F. Kontgen and C. L. Stewart, “Simple screening procedure to detect gene targeting events in embryonic stem cells,” Methods in Enzymology, vol. 225, pp. 878–890, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Koentgen, G. Suess, and D. Naf, “Engineering the mouse genome to model human disease for drug discovery,” Methods in Molecular Biology, vol. 602, pp. 55–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Friedrich and P. Soriano, “Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice,” Genes and Development, vol. 5, no. 9, pp. 1513–1523, 1991. View at Google Scholar · View at Scopus
  32. A. Segura-Carretero, M. A. Puertas-Mejía, S. Cortacero-Ramírez et al., “Selective extraction, separation, and identification of anthocyanins from Hibiscus sabdariffa L. using solid phase extraction-capillary electrophoresis-mass spectrometry (time-of-flight/ion trap),” Electrophoresis, vol. 29, no. 13, pp. 2852–2861, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Simó, I. Castellano, N. Ferré, J. Joven, and J. Camps, “Evaluation of homogeneous assay for high-density lipoprotein cholesterol: limitations in patients with cardiovascular, renal, and hepatic disorders,” Clinical Chemistry, vol. 44, no. 6, pp. 1233–1241, 1998. View at Google Scholar · View at Scopus
  34. J. Joven, E. Espinel, A. Rull et al., “Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice,” Biochimica et Biophysica Acta, vol. 1820, no. 7, pp. 894–899, 2012. View at Google Scholar
  35. D. C. Lacey, A. Achuthan, A. J. Fleetwood et al., “Defining GM-CSF- and macrophage-CSF-dependentmacrophage responses by in vitro models,” Journal of Immunolology, vol. 188, no. 11, pp. 5752–5765, 2012. View at Google Scholar
  36. A. E. Petro, J. Cotter, D. A. Cooper, J. C. Peters, S. J. Surwit, and R. S. Surwit, “Fat, carbohydrate, and calories in the development of diabetes and obesity in the C57BL/6J mouse,” Metabolism, vol. 53, no. 4, pp. 454–457, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. K. J. Strissel, Z. Stancheva, H. Miyoshi et al., “Adipocyte death, adipose tissue remodeling, and obesity complications,” Diabetes, vol. 56, no. 12, pp. 2910–2918, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. V. J. Vieira Potter, K. J. Strissel, C. Xie et al., “Adipose tissue inflammation and reducedinsulinsensitivity in ovariectomizedmiceoccurs in the absence of increasedadiposity,” Endocrinology, vol. 153, pp. 4266–4277, 2012. View at Google Scholar
  39. J. A. Menendez, J. Joven, S. Cufi et al., “The Warburg effect version 2. 0: metabolic reprogramming of cancer stem cells,” Cell Cycle, vol. 12, no. 8, pp. 1166–1179, 2013. View at Google Scholar
  40. S. Gesta, Y. Tseng, and C. R. Kahn, “Developmental origin of fat: tracking obesity to its source,” Cell, vol. 131, no. 2, pp. 242–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Panee, “Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes,” Cytokine, vol. 60, no. 1, pp. 1–12, 2012. View at Google Scholar
  42. M. Vohl, R. Sladek, J. Robitaille et al., “A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men,” Obesity Research, vol. 12, no. 8, pp. 1217–1222, 2004. View at Google Scholar · View at Scopus
  43. S. Gesta, M. Blühet, Y. Yamamoto et al., “Evidence for a role of developmental genes in the origin of obesity and body fat distribution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 17, pp. 6676–6681, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Vidal, “Gene expression in visceral and subcutaneous adipose tissues,” Annals of Medicine, vol. 33, no. 8, pp. 547–555, 2001. View at Google Scholar · View at Scopus
  45. M. Lafontan and M. Berlan, “Do regional differences in adipocyte biology provide new pathophysiological insights?” Trends in Pharmacological Sciences, vol. 24, no. 6, pp. 276–283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. D. O'Reilly, M. Addley, C. Quinn et al., “Functional analysis of the murine Emr1 promoter identifies a novel purine-rich regulatory motif required for high-level gene expression in macrophages,” Genomics, vol. 84, no. 6, pp. 1030–1040, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Mandrekar, A. Ambade, A. Lim, G. Szabo, and D. Catalano, “An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice,” Hepatology, vol. 54, no. 6, pp. 2185–2197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Marsillach, J. Camps, N. Ferré et al., “Paraoxonase-1 is related to inflammation, fibrosis and PPAR delta in experimental liver disease,” BMC Gastroenterology, vol. 9, article 3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Vinaixa, M. Ángel Rodríguez, A. Rull et al., “Metabolomic assessment of the effect of dietary cholesterol in the progressive development of fatty liver disease,” Journal of Proteome Research, vol. 9, no. 5, pp. 2527–2538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Rull, F. Rodríguez, G. Aragonès et al., “Hepatic monocyte chemoattractant protein-1 is upregulated by dietary colesterol and contributes to liver steatosis,” Cytokine, vol. 48, no. 3, pp. 273–279, 2009. View at Google Scholar
  51. G. Li, Y. Kim, and H. E. Broxmeyer, “Macrophage colony-stimulating factor drives cord blood monocyte differentiation into IL-10highIL-12absent dendritic cells with tolerogenic potential,” The Journal of Immunology, vol. 174, no. 8, pp. 4706–4717, 2005. View at Google Scholar · View at Scopus
  52. K. S. Akagawa, “Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages,” International Journal of Hematology, vol. 76, no. 1, pp. 27–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. T. L. Denning, Y. Wang, S. R. Patel, I. R. Williams, and B. Pulendran, “Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses,” Nature Immunology, vol. 8, no. 10, pp. 1086–1094, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Naito, G. Hasegawa, Y. Ebe, and T. Yamamoto, “Differentiation and function of Kupffer cells,” Medical Electron Microscopy, vol. 37, no. 1, pp. 16–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Aouadi, M. Tencerova, P. Vangala et al., “Gene silencing in adipose tissue macrophages regulates whole-body metabolism in obese mice,” Procedings of the National Academy of Sciences of the United States of America, vol. 110, no. 20, pp. 8278–8283, 2013. View at Google Scholar
  56. S. Hoppins, L. Lackner, and J. Nunnari, “The machines that divide and fuse mitochondria,” Annual Review of Biochemistry, vol. 76, pp. 751–780, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Westermann, “Mitochondrial fusion and fission in cell life and death,” Nature Reviews Molecular Cell Biology, vol. 11, no. 12, pp. 872–884, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. D. C. Chan, “Mitochondrial fusion and fission in mammals,” Annual Review of Cell and Developmental Biology, vol. 22, pp. 79–99, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. A. E. Frazier, C. Kiu, D. Stojanovski, N. J. Hoogenraad, and M. T. Ryan, “Mitochondrial morphology and distribution in mammalian cells,” Biological Chemistry, vol. 387, no. 12, pp. 1551–1558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. B. Westermann, “Bioenergetic role of mitochondrial fusion and fission,” Biochimica et Biophysica Acta, vol. 1817, no. 10, pp. 1833–1838, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. D. C. Chan, “Mitochondria: dynamic organelles in disease, aging, and development,” Cell, vol. 125, no. 7, pp. 1241–1252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Serviddio, F. Bellanti, G. Vendemiale, and E. Altomare, “Mitochondrial dysfunction in nonalcoholic steatohepatitis,” Expert Review of Gastroenterology and Hepatology, vol. 5, no. 2, pp. 233–244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Raffaello and R. Rizzuto, “Mitochondrial longevity pathways,” Biochimica et Biophysica Acta, vol. 1813, no. 1, pp. 260–268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Mizushima, T. Yoshimori, and Y. Ohsumi, “The role of atg proteins in autophagosome formation,” Annual Review of Cell and Developmental Biology, vol. 27, pp. 107–132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Narita, A. R. J. Young, S. Arakawa et al., “Spatial coupling of mTOR and autophagy augments secretory phenotypes,” Science, vol. 332, no. 6032, pp. 966–970, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. E. F. Castillo, A. Dekonenko, J. Arko-Mensah et al., “Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation,” Procedings of the National Academy of Sciences of the United States of America, vol. 109, no. 46, pp. E3168–E3176, 2012. View at Google Scholar
  67. J. Harris, M. Hartman, C. Roche et al., “Autophagy controls IL-1β secretion by targeting Pro-IL-1β for degradation,” The Journal of Biological Chemistry, vol. 286, no. 11, pp. 9587–9597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Cadwell, J. Y. Liu, S. L. Brown et al., “A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells,” Nature, vol. 456, no. 7219, pp. 259–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Levine, N. Mizushima, and H. W. Virgin, “Autophagy in immunity and inflammation,” Nature, vol. 469, no. 7330, pp. 323–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. X. Liao, J. C. Sluimer, Y. Wang et al., “Macrophage autophagy plays a protective role in advanced atherosclerosis,” Cell Metabolism, vol. 15, no. 4, pp. 545–553, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Roca, Z. Varsos, and K. J. Pienta, “CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin Up-regulation,” The Journal of Biological Chemistry, vol. 283, no. 36, pp. 25057–25073, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Zhang, M. J. Morgan, K. Chen, S. Choksi, and Z. Liu, “Induction of autophagy is essential for monocyte-macrophage differentiation,” Blood, vol. 119, no. 12, pp. 2895–2905, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Rodier and J. Campisi, “Four faces of cellular senescence,” Journal of Cell Biology, vol. 192, no. 4, pp. 547–562, 2011. View at Google Scholar · View at Scopus
  74. A. Trifunovic, A. Wredenberg, M. Falkenberg et al., “Premature ageing in mice expressing defective mitochondrial DNA polymerase,” Nature, vol. 429, no. 6990, pp. 417–423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Salminen, J. Ojala, K. Kaarniranta, and A. Kauppinen, “Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases,” Cellular and Molecular Life Sciences, vol. 69, no. 18, pp. 2999–3013, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Joven, J. Menéndez, L. Fernandez-Sender et al., “Metformin: a cheap and well-tolerated drug that provides benefits for viral infections,” HIV Medicine, vol. 14, no. 4, pp. 233–240, 2013. View at Google Scholar
  77. S. Del Barco, A. Vazquez-Martin, S. Cufí et al., “Metformin: multi-faceted protection against cancer,” Oncotarget, vol. 2, no. 12, pp. 896–917, 2011. View at Google Scholar
  78. J. A. Menendez, S. Cufí, C. Oliveras-Ferraros, L. Vellon, J. Joven, and A. Vazquez-Martin, “Gerosuppressant metformin: less is more,” Aging, vol. 3, no. 4, pp. 348–362, 2011. View at Google Scholar · View at Scopus
  79. I. Mercier, J. Camacho, K. Titchen et al., “Caveolin-1 and accelerated host aging in the breast tumor microenvironment: chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug,” The American Journal of Pathology, vol. 181, no. 1, pp. 278–293, 2012. View at Google Scholar
  80. F. V. Din, A. Valanciute, V. P. Houde et al., “Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells,” Gastroenterology, vol. 142, no. 7, pp. 1504–1515, 2012. View at Google Scholar
  81. M. V. Blagosklonny, “Common drugs and treatment for cancer and age-related diseases: revitalizing answers to NCI’s provocative questions,” Oncotarget, vol. 3, no. 12, pp. 1711–1724, 2012. View at Google Scholar