Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 131950, 11 pages
http://dx.doi.org/10.1155/2014/131950
Research Article

TNF-Like Weak Inducer of Apoptosis Aggravates Left Ventricular Dysfunction after Myocardial Infarction in Mice

1Department of Cardiology, Angiology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
2Department of Immunology, Biogen Idec, Cambridge, MA 02142, USA
3Department of Cardiology and Angiology, University of Kiel, Schittenhelmstraße 12, 24105 Kiel, Germany

Received 15 November 2013; Revised 27 December 2013; Accepted 30 December 2013; Published 20 February 2014

Academic Editor: Fulvio D'Acquisto

Copyright © 2014 Kai-Uwe Jarr et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Han, K. Yoon, K. Lee et al., “TNF-related weak inducer of apoptosis receptor, a TNF receptor superfamily member, activates NF-kappa B through TNF receptor-associated factors,” Biochemical and Biophysical Research Communications, vol. 305, no. 4, pp. 789–796, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Kleinbongard, G. Heusch, and R. Schulz, “TNF-alpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure,” Pharmacology and Therapeutics, vol. 127, no. 3, pp. 295–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Aukrust, T. Ueland, F. Müller et al., “Elevated circulating levels of C-C chemokines in patients with congestive heart failure,” Circulation, vol. 97, no. 12, pp. 1136–1143, 1998. View at Google Scholar · View at Scopus
  4. T. M. Behr, X. Wang, N. Aiyar et al., “Monocyte chemoattractant protein-1 is upregulated in rats with volume-overload congestive heart failure,” Circulation, vol. 102, no. 11, pp. 1315–1322, 2000. View at Google Scholar · View at Scopus
  5. E. S. Chung, M. Packer, K. H. Lo, A. A. Fasanmade, and J. T. Willerson, “Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial,” Circulation, vol. 107, no. 25, pp. 3133–3140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Cuenca, N. Goren, P. Prieto, P. Martín-Sanz, and L. Boscá, “Selective impairment of nuclear factor-kappa B-dependent gene transcription in adult cardiomyocytes: relevance for the regulation of the inflammatory response in the heart,” The American Journal of Pathology, vol. 171, no. 3, pp. 820–828, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. K. Damås, H. G. Eiken, E. Øie et al., “Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure,” Cardiovascular Research, vol. 47, no. 4, pp. 778–787, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Deswal, B. Bozkurt, Y. Seta et al., “Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure,” Circulation, vol. 99, no. 25, pp. 3224–3226, 1999. View at Google Scholar · View at Scopus
  9. B. Levine, J. Kalman, L. Mayer, H. M. Fillit, and M. Packer, “Elevated circulating levels of tumor necrosis factor in severe chronic heart failure,” The New England Journal of Medicine, vol. 323, no. 4, pp. 236–241, 1990. View at Google Scholar · View at Scopus
  10. T. Hamid, Y. Gu, R. V. Ortines et al., “Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappa B and inflammatory activation,” Circulation, vol. 119, no. 10, pp. 1386–1397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Dogra, H. Changotra, S. Mohan, and A. Kumar, “Tumor necrosis factor-like weak inducer of apoptosis inhibits skeletal myogenesis through sustained activation of nuclear factor-kappa B and degradation of MyoD protein,” The Journal of Biological Chemistry, vol. 281, no. 15, pp. 10327–10336, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Dogra, H. Changotra, N. Wedhas, X. Qin, J. E. Wergedal, and A. Kumar, “TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine,” The FASEB Journal, vol. 21, no. 8, pp. 1857–1869, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Dogra, S. L. Hall, N. Wedhas, T. A. Linkhart, and A. Kumar, “Fibroblast growth factor inducible 14 (Fn14) is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes: evidence for TWEAK-independent functions of Fn14 during myogenesis,” The Journal of Biological Chemistry, vol. 282, no. 20, pp. 15000–15010, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. L. Feng, Y. Guo, V. M. Factor et al., “The Fn14 immediate-early response gene is induced during liver regeneration and highly expressed in both human and murine hepatocellular carcinomas,” The American Journal of Pathology, vol. 156, no. 4, pp. 1253–1261, 2000. View at Google Scholar · View at Scopus
  15. L. C. Burkly, J. S. Michaelson, and T. S. Zheng, “TWEAK/Fn14 pathway: an immunological switch for shaping tissue responses,” Immunological Reviews, vol. 244, no. 1, pp. 99–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Winkles, “The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting,” Nature Reviews Drug Discovery, vol. 7, no. 5, pp. 411–425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Chorianopoulos, T. Heger, M. Lutz et al., “FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappa B activation by TWEAK,” Basic Research in Cardiology, vol. 105, no. 2, pp. 301–313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Jain, A. Jakubowski, L. Cui et al., “A novel role for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the development of cardiac dysfunction and failure,” Circulation, vol. 119, no. 15, pp. 2058–2068, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Chorianopoulos, M. Rosenberg, C. Zugck, J. Wolf, H. A. Katus, and N. Frey, “Decreased soluble TWEAK levels predict an adverse prognosis in patients with chronic stable heart failure,” European Journal of Heart Failure, vol. 11, no. 11, pp. 1050–1056, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Chorianopoulos, K. Jarr, H. Steen, E. Giannitsis, N. Frey, and H. A. Katus, “Soluble TWEAK is markedly upregulated in patients with ST-elevation myocardial infarction and related to an adverse short-term outcome,” Atherosclerosis, vol. 211, no. 1, pp. 322–326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Shi, B. Jiang, Y. Qiu et al., “PGC1α plays a critical role in TWEAK-induced cardiac dysfunction,” PLoS ONE, vol. 8, no. 1, Article ID e54054, 2013. View at Publisher · View at Google Scholar
  22. S. Sato, Y. Ogura, V. Mishra et al., “TWEAK promotes exercise intolerance by decreasing skeletal muscle oxidative phosphorylation capacity,” Skeletal Muscle, vol. 3, article 18, 2013. View at Publisher · View at Google Scholar
  23. S. Campbell, L. C. Burkly, H. X. Gao et al., “Proinflammatory effects of Tweak/Fn14 interactions in glomerular mesangial cells,” Journal of Immunology, vol. 176, no. 3, pp. 1889–1898, 2006. View at Google Scholar · View at Scopus
  24. A. Jakubowski, C. Ambrose, M. Parr et al., “TWEAK induces liver progenitor cell proliferation,” The Journal of Clinical Investigation, vol. 115, pp. 2330–2340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Planavila, J. C. Laguna, and M. Vázquez-Carrera, “Nuclear factor-κB activation leads to down-regulation of fatty acid oxidation during cardiac hypertrophy,” The Journal of Biological Chemistry, vol. 280, no. 17, pp. 17464–17471, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Mustonen, H. Säkkinen, H. Tokola et al., “Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 during cardiac remodelling in rats,” Acta Physiologica, vol. 199, no. 1, pp. 11–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Schilling, L. Lai, N. Sambandam, C. E. Dey, T. C. Leone, and D. P. Kelly, “Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor γ coactivator-1 signaling,” Circulation, vol. 4, no. 4, pp. 474–482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Arany, M. Novikov, S. Chin, Y. Ma, A. Rosenzweig, and B. M. Spiegelman, “Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 10086–10091, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. B. N. Finck and D. P. Kelly, “Peroxisome proliferator–activated receptor-γ coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease,” Circulation, vol. 115, no. 19, pp. 2540–2548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Pachel, D. Mathes, B. Bayer et al., “Exogenous administration of a recombinant variant of TWEAK impairs healing after myocardial infarction by aggravation of inflammation,” PLoS ONE, vol. 8, no. 11, Article ID e78938, 2013. View at Publisher · View at Google Scholar
  31. B. Richter, K. Rychli, P. J. Hohensinner et al., “Differences in the predictive value of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in advanced ischemic and non-ischemic heart failure,” Atherosclerosis, vol. 213, no. 2, pp. 545–548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. L. C. Bover, M. Cardó-Vila, A. Kuniyasu et al., “A previously unrecognized protein-protein interaction between TWEAK and CD163: potential biological implications,” Journal of Immunology, vol. 178, no. 12, pp. 8183–8194, 2007. View at Google Scholar · View at Scopus