Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 236060, 11 pages
http://dx.doi.org/10.1155/2014/236060
Clinical Study

Immunologic Biomarkers for Clinical and Therapeutic Management of Psoriasis

1Clinical Pathology & Microbiology, San Gallicano Dermatology Institute, Via Elio Chianesi 53, 00144 Rome, Italy
2Dermatology, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy
3Clinical Dermatology, San Gallicano Dermatology Institute, Via Elio Chianesi 53, 00144 Rome, Italy
4Anatomic Pathology, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy

Received 6 March 2014; Revised 26 June 2014; Accepted 26 June 2014; Published 20 July 2014

Academic Editor: Anshu Agrawal

Copyright © 2014 P. Cordiali-Fei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Raut, R. H. Prabhu, and V. B. Patravale, “Psoriasis clinical implications and treatment: a review,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 30, no. 3, pp. 183–216, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. J. T. Elder, “Genome-wide association scan yields new insights into the immunopathogenesis of psoriasis,” Genes and Immunity, vol. 10, no. 3, pp. 201–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Morris, M. Rogers, G. Fischer, and K. Williams, “Childhood psoriasis: a clinical review of 1262 cases,” Pediatric Dermatology, vol. 18, no. 3, pp. 188–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Naldi, L. Peli, F. Parazzini, and C. F. Carrel, “Family history of psoriasis, stressful life events, and recent infectious disease are risk factors for a first episode of acute guttate psoriasis: results of a case-control study,” Journal of the American Academy of Dermatology, vol. 44, no. 3, pp. 433–438, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. C. E. Griffiths and J. N. Barker, “Pathogenesis and clinical features of psoriasis,” The Lancet, vol. 370, no. 9583, pp. 263–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Chandran, “The genetics of psoriasis and psoriatic arthritis,” Clinical Reviews in Allergy and Immunology, vol. 44, no. 2, pp. 149–156, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. W. R. Swindell, A. Johnston, J. J. Voorhees, J. T. Elder, and J. E. Gudjonsson, “Dissecting the psoriasis transcriptome: inflammatory- and cytokine-driven gene expression in lesions from 163 patients,” BMC Genomics, vol. 14, no. 1, article 527, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. J. P. McFadden, B. S. Baker, A. V. Powles, and L. Fry, “Psoriasis and streptococci: the natural selection of psoriasis revisited,” British Journal of Dermatology, vol. 160, no. 5, pp. 929–937, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. L. C. Zaba, J. Fuentes-Duculan, N. J. Eungdamrong et al., “Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells,” The Journal of Investigative Dermatology, vol. 129, no. 1, pp. 79–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. K. E. Nograles, L. C. Zaba, E. Guttman-Yassky et al., “Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways,” British Journal of Dermatology, vol. 159, no. 5, pp. 1092–1102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. S. Day, D. Nam, S. Goodman, E. P. Su, and M. Figgie, “Psoriatic arthritis,” Journal of the American Academy of Orthopaedic Surgeons, vol. 20, no. 1, pp. 28–37, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Rahimi and C. T. Ritchlin, “Altered bone biology in psoriatic arthritis,” Current Rheumatology Reports, vol. 14, no. 4, pp. 349–357, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. M. L. McCully, K. Ladell, S. Hakobyan, R. E. Mansel, D. A. Price, and B. Moser, “Epidermis instructs skin homing receptor expression in human T cells,” Blood, vol. 120, no. 23, pp. 4591–4598, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. R. C. Fuhlbrigge, J. D. Kieffer, D. Armerding, and T. S. Kupper, “Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells,” Nature, vol. 389, no. 6654, pp. 978–981, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Davison, A. Ballsdon, M. H. Allen, and J. N. W. N. Barker, “Early migration of cutaneous lymphocyte-associated antigen (CLA) positive T cells into evolving psoriatic plaques,” Experimental Dermatology, vol. 10, no. 4, pp. 280–285, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Sigmundsdóttir, J. E. Gudjónsson, I. Jónsdóttir, B. R. Lúdvíksson, and H. Valdimarsson, “The frequency of CLA+ CD8+ T cells in the blood of psoriasis patients correlates closely with the severity of their disease,” Clinical and Experimental Immunology, vol. 126, no. 2, pp. 365–369, 2001. View at Publisher · View at Google Scholar
  17. M. Apostolaki, M. Armaka, P. Victoratos, and G. Kollias, “Cellular mechanisms of TNF function in models of inflammation and autoimmunity,” Current Directions in Autoimmunity, vol. 11, pp. 1–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. G. Krueger, “The immunologic basis for the treatment of psoriasis with new biologic agents,” Journal of the American Academy of Dermatology, vol. 46, no. 1, pp. 1–26, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Palladino, F. R. Bahjat, E. A. Theodorakis, and L. L. Moldawer, “Anti-TNF-α therapies: The next generation,” Nature Reviews Drug Discovery, vol. 2, no. 9, pp. 736–746, 2003. View at Google Scholar · View at Scopus
  20. A. B. Gottlieb, F. Chamian, S. Masud et al., “TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques,” The Journal of Immunology, vol. 175, no. 4, pp. 2721–2729, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. S. Gall and R. E. Kalb, “Infl iximab for the treatment of plaque psoriasis,” Biologics: Targets and Therapy, vol. 2, no. 1, pp. 115–124, 2008. View at Google Scholar · View at Scopus
  22. L. C. Zaba, I. Cardinale, P. Gilleaudeau et al., “Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 response,” The Journal of Experimental Medicine, vol. 205, pp. 1517–1522, 2008. View at Google Scholar
  23. M. A. Lowes, T. Kikuchi, J. Fuentes-Duculan et al., “Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells,” Journal of Investigative Dermatology, vol. 128, no. 5, pp. 1207–1211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Fitch, E. Harper, I. Skorcheva, S. E. Kurtz, and A. Blauvelt, “Pathophysiology of psoriasis: recent advances on IL-23 and TH17 cytokines,” Current Rheumatology Reports, vol. 9, no. 6, pp. 461–467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. H. L. Ma, S. Liang, J. Li et al., “IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 597–607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Wolk, E. Witte, E. Wallace et al., “IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis,” European Journal of Immunology, vol. 36, no. 5, pp. 1309–1323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. N. J. Wilson, K. Boniface, J. R. Chan et al., “Development, cytokine profile and function of human interleukin 17-producing helper T cells,” Nature Immunology, vol. 8, no. 9, pp. 950–957, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Sugiyama, R. Gyulai, E. Toichi et al., “Dysfunctional blood and target tissue CD4+CD25 high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation,” Journal of Immunology, vol. 174, no. 1, pp. 164–173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. W. A. Goodman, A. B. Young, T. S. McCormick, K. D. Cooper, and A. D. Levine, “Stat3 phosphorylation mediates resistance of primary human T cells to regulatory T cell suppression,” The Journal of Immunology, vol. 186, no. 6, pp. 3336–3345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. C. H. Smith, A. V. Anstey, J. N. W. N. Barker et al., “British Association of Dermatologists' guidelines for biologic interventions for psoriasis 2009,” British Journal of Dermatology, vol. 161, no. 5, pp. 987–1019, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. E. M. Griffiths, B. E. Strober, P. van de Kerkhof et al., “Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis,” The New England Journal of Medicine, vol. 362, no. 2, pp. 118–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Au, A. Madani, M. Alhaddad, M. Alkofide, and A. B. Gottlieb, “Comparison of the efficacy of biologics versus conventional systemic therapies in the treatment of psoriasis at a comprehensive psoriasis care center,” Journal of Drugs in Dermatology, vol. 12, no. 8, pp. 861–866, 2013. View at Google Scholar · View at Scopus
  33. S. Piaserico, S. Cazzaniga, S. Chimenti et al., “Efficacy of switching between tumor necrosis factor-alfa inhibitors in psoriasis: results from the Italian Psocare Registry,” Journal of the American Academy of Dermatology, vol. 70, pp. 257–262, 2014. View at Google Scholar
  34. W. Taylor, D. Gladman, P. Helliwell, A. Marchesoni, P. Mease, and H. Mielants, “Classification criteria for psoriatic arthritis: development of new criteria from a large international study,” Arthritis and Rheumatism, vol. 54, no. 8, pp. 2665–2673, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Pathirana, A. D. Ormerod, and P. Saiag, “European S3-Guidelines on the systemic treatment of psoriasis vulgaris,” Journal of the European Academy of Dermatology and Venereology, vol. 23, supplement 2, pp. 1–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Naldi, A. Addis, C. Tomino et al., “Trattamento della psoriasi con farmaci sistemici in Italia,” http://www.agenziafarmaco.gov.it/it/content/registri-farmaci-sottoposti-monitoraggio.
  37. C. R. Parish and H. S. Warren, “Use of the intracellular fluorescent dye CFSE to monitor lymphocyte migration and proliferation,” Current Protocols in Immunology, Chapter 4, Unit 4.9, 2002. View at Publisher · View at Google Scholar
  38. P. Cordiali-Fei, M. Ardigò, A. Mastroianni et al., “Serum cytokines and bioumoral immunological characterization of psoriatic patients in long term etanercept treatment,” International Journal of Immunopathology and Pharmacology, vol. 21, no. 3, pp. 643–649, 2008. View at Google Scholar · View at Scopus
  39. F. Wang, N. Smith, L. Maier et al., “Etanercept suppresses regenerative hyperplasia in psoriasis by acutely downregulating epidermal expression of interleukin (IL)-19, IL-20 and IL-24,” British Journal of Dermatology, vol. 167, no. 1, pp. 92–102, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Quaglino, M. Bergallo, R. Ponti et al., “Th1, Th2, Th17 and regulatory T cell pattern in psoriatic patients: modulation of cytokines and gene targets induced by etanercept treatment and correlation with clinical response,” Dermatology, vol. 223, no. 1, pp. 57–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Chandran, H. Shen, R. A. Pollock et al., “Soluble biomarkers associated with response to treatment with tumor necrosis factor inhibitors in psoriatic arthritis,” Journal of Rheumatology, vol. 40, no. 6, pp. 866–871, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Larsen, A. Anderson, J. Oppenheim, and K. Matsushima, “Production of interleukin-8 by human dermal fibroblasts and keratinocytes in response to interleukin-1 or tumour necrosis factor,” Immunology, vol. 68, no. 1, pp. 31–36, 1989. View at Google Scholar · View at Scopus
  43. S. L. Kunkel, R. M. Strieter, S. W. Chensue et al., “Tumor necrosis factor-alpha, interleukin-8 and chemotactic cytokines,” Progress in Clinical and Biological Research, vol. 349, pp. 433–444, 1990. View at Google Scholar · View at Scopus
  44. A. Li, S. Dubey, M. L. Varney, B. J. Dave, and R. K. Singh, “IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis,” Journal of Immunology, vol. 170, no. 6, pp. 3369–3376, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Michalak-Stoma, J. Bartosinska, M. Kowal, M. Juszkiewicz-Borowiec, A. Gerkowicz, and G. Chodorowska, “Serum levels of selected Th17 and Th22 cytokines in psoriatic patients,” Disease Markers, vol. 35, pp. 625–631, 2013. View at Google Scholar
  46. K. E. Nograles, B. Davidovici, and J. G. Krueger, “New insights in the immunologic basis of psoriasis,” Seminars in Cutaneous Medicine and Surgery, vol. 29, no. 1, pp. 3–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Rutz, C. Eidenschenk, and W. Ouyang, “IL-22, not simply a Th17 cytokine,” Immunological Reviews, vol. 252, no. 1, pp. 116–132, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. P. C. M. Res, G. Piskin, O. J. de Boer et al., “Overrepresentation of IL-17A and IL-22 Producing CD8 T Cells in Lesional Skin Suggests Their Involvement in the pathogenesis of psoriasis,” PLoS ONE, vol. 5, no. 11, Article ID e14108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. W. A. Goodman, A. D. Levine, J. V. Massari, H. Sugiyama, T. S. McCormick, and K. D. Cooper, “IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells,” The Journal of Immunology, vol. 183, no. 5, pp. 3170–3176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. W. A. Goodman, A. B. Young, T. S. McCormick, K. D. Cooper, and A. D. Levine, “Stat3 phosphorylation mediates resistance of primary human T cells to regulatory T cell suppression,” Journal of Immunology, vol. 186, no. 6, pp. 3336–3345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Ferran, A. B. Galván, C. Rincón et al., “Streptococcus induces circulating CLA+ memory T-cell-dependent epidermal cell activation in psoriasis,” Journal of Investigative Dermatology, vol. 133, no. 4, pp. 999–1007, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. M. B. Teunissen, N. G. Yeremenko, D. L. Baeten et al., “The IL-17A-producing CD8+ T cell population in psoriatic lesional skin comprises mucosa.-associated invariant T cells and conventional T cells,” Journal of Investigative Dermatology, 2014. View at Publisher · View at Google Scholar
  53. P. Quaglino, M. Ortoncelli, A. Comessatti et al., “Circulating CD4+CD25bright FOXP3+ T cells are up-regulated by biological therapies and correlate with the clinical response in psoriasis patients,” Dermatology, vol. 219, no. 3, pp. 250–258, 2009. View at Publisher · View at Google Scholar
  54. A. G. Richetta, C. Mattozzi, M. Salvi et al., “CD4+ CD25+ T-regulatory cells in psoriasis. Correlation between their numbers and biologics-induced clinical improvement,” European Journal of Dermatology, vol. 21, no. 3, pp. 344–348, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. K. S. Campbell and J. Hasegawa, “Natural killer cell biology: an update and future directions,” Journal of Allergy and Clinical Immunology, vol. 132, no. 3, pp. 536–544, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Ottaviani, F. Nasorri, C. Bedini, O. de Pità, G. Girolomoni, and A. Cavani, “CD56brightCD16 NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation,” European Journal of Immunology, vol. 36, no. 1, pp. 118–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Dunphy and C. M. Gardiner, “NK cells and psoriasis,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 248317, 10 pages, 2011. View at Publisher · View at Google Scholar
  58. T. Cobo-Ibáñez, M. A. Descalzo, E. Loza-Santamaría, L. Carmona, and S. Muñoz-Fernández, “Serious infections in patients with rheumatoid arthritis and other immune-mediated connective tissue diseases exposed to anti-TNF or rituximab: data from the Spanish registry BIOBADASER 2.0,” Rheumatology International, vol. 34, no. 7, pp. 953–961, 2014. View at Publisher · View at Google Scholar