Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 538737, 15 pages
http://dx.doi.org/10.1155/2014/538737
Research Article

Sitagliptin Prevents Inflammation and Apoptotic Cell Death in the Kidney of Type 2 Diabetic Animals

1Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
2ESAV, Technologies and Health Study Center, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
3Educational Technologies and Health Study Center, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
4Institute of Immunology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
5Immunology and Oncology Laboratory, CNC, 3004-517 Coimbra, Portugal
6Center of Ophthalmology and Vision Sciences, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal

Received 10 January 2014; Revised 6 March 2014; Accepted 6 March 2014; Published 8 April 2014

Academic Editor: Fulvio D’Acquisto

Copyright © 2014 Catarina Marques et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Dronavalli, I. Duka, and G. L. Bakris, “The pathogenesis of diabetic nephropathy,” Nature Clinical Practice Endocrinology and Metabolism, vol. 4, no. 8, pp. 444–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. S. Kanwar, J. Wada, L. Sun et al., “Diabetic nephropathy: mechanisms of renal disease progression,” Experimental Biology and Medicine (Maywood), vol. 233, no. 1, pp. 4–11, 2008. View at Publisher · View at Google Scholar
  3. J. A. Jefferson, S. J. Shankland, and R. H. Pichler, “Proteinuria in diabetic kidney disease: a mechanistic viewpoint,” Kidney International, vol. 74, no. 1, pp. 22–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. G. M. Magee, R. W. Bilous, C. R. Cardwell, S. J. Hunter, F. Kee, and D. G. Fogarty, “Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis,” Diabetologia, vol. 52, no. 4, pp. 691–697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Noh and G. L. King, “The role of protein kinase C activation in diabetic nephropathy,” Kidney International, no. 106, pp. S49–S53, 2007. View at Google Scholar · View at Scopus
  6. N. Tanji, G. S. Markowitz, C. Fu et al., “Expression of advanced glycation end products and their cellular receptor RAGE diabetic nephropathy and nondiabetic renal disease,” Journal of the American Society of Nephrology, vol. 11, no. 9, pp. 1656–1666, 2000. View at Google Scholar · View at Scopus
  7. M. Dunlop, “Aldose reductase and the role of the polyol pathway in diabetic nephropathy,” Kidney International, vol. 58, no. 77, pp. S3–S12, 2000. View at Google Scholar · View at Scopus
  8. V. Kolm-Litty, U. Sauer, A. Nerlich, R. Lehmann, and E. D. Schleicher, “High glucose-induced transforming growth factor β1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells,” Journal of Clinical Investigation, vol. 101, no. 1, pp. 160–169, 1998. View at Google Scholar · View at Scopus
  9. J. M. Forbes, M. T. Coughlan, and M. E. Cooper, “Oxidative stress as a major culprit in kidney disease in diabetes,” Diabetes, vol. 57, no. 6, pp. 1446–1454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Saraheimo, A.-M. Teppo, C. Forsblom, J. Fagerudd, and P.-H. Groop, “Diabetic nephropathy is associated with low-grade inflammation in Type 1 diabetic patients,” Diabetologia, vol. 46, no. 10, pp. 1402–1407, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Dalla Vestra, M. Mussap, P. Gallina et al., “Acute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes,” Journal of the American Society of Nephrology, vol. 16, no. 3, supplement 1, pp. S78–S82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C. L. Nelson, C. S. Karschimkus, G. Dragicevic et al., “Systemic and vascular inflammation is elevated in early IgA and type 1 diabetic nephropathies and relates to vascular disease risk factors and renal function,” Nephrology Dialysis Transplantation, vol. 20, no. 11, pp. 2420–2426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. K. Lim and G. H. Tesch, “Inflammation in diabetic nephropathy,” Mediators of Inflammation, vol. 2012, Article ID 146154, 12 pages, 2012. View at Publisher · View at Google Scholar
  14. A. Rivero, C. Mora, M. Muros, J. García, H. Herrera, and J. F. Navarro-González, “Pathogenic perspectives for the role of inflammation in diabetic nephropathy,” Clinical Science, vol. 116, no. 6, pp. 479–492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M.-D. Sanchez-Niño, A. Benito-Martin, and A. Ortiz, “New paradigms in cell death in human diabetic nephropathy,” Kidney International, vol. 78, no. 8, pp. 737–744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. F. A. D. T. G. Wagener, D. Dekker, J. H. Berden, A. Scharstuhl, and J. van der Vlag, “The role of reactive oxygen species in apoptosis of the diabetic kidney,” Apoptosis, vol. 14, no. 12, pp. 1451–1458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Susztak, A. C. Raff, M. Schiffer, and E. P. Böttinger, “Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy,” Diabetes, vol. 55, no. 1, pp. 225–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. B. P. S. Kang, S. Frencher, V. Reddy, A. Kessler, A. Malhorta, and L. G. Meggs, “High glucose promotes mesangial cell apoptosis by oxidant-dependent mechanism,” American Journal of Physiology: Renal Physiology, vol. 284, no. 3, pp. F455–F466, 2003. View at Google Scholar · View at Scopus
  19. D. Verzola, M. B. Bertolotto, B. Villaggio et al., “Taurine prevents apoptosis induced by high ambient glucose in human tubule renal cells,” Journal of Investigative Medicine, vol. 50, no. 6, pp. 443–451, 2002. View at Google Scholar · View at Scopus
  20. A. J. Scheen, “DPP-4 inhibitors in the management of type 2 diabetes: a critical review of head-to-head trials,” Diabetes and Metabolism, vol. 38, no. 2, pp. 89–101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Grunberger, “Novel therapies for the management of type 2 diabetes mellitus: part 2—addressing the incretin defect in the clinical setting in 2013,” Journal of Diabetes, vol. 5, no. 3, pp. 241–253, 2013. View at Google Scholar
  22. D. J. Drucker, “The biology of incretin hormones,” Cell Metabolism, vol. 3, no. 3, pp. 153–165, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Nauck, E. Homberger, E. G. Siegel et al., “Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses,” Journal of Clinical Endocrinology and Metabolism, vol. 63, no. 2, pp. 492–498, 1986. View at Google Scholar · View at Scopus
  24. B. Ahrén, E. Simonsson, H. Larsson et al., “Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes,” Diabetes Care, vol. 25, no. 5, pp. 869–875, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Kim, L. Wang, M. Beconi et al., “(2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a] pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: A potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes,” Journal of Medicinal Chemistry, vol. 48, no. 1, pp. 141–151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Aschner, M. S. Kipnes, J. K. Lunceford, M. Sanchez, C. Mickel, and D. E. Williams-Herman, “Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes,” Diabetes Care, vol. 29, no. 12, pp. 2632–2637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Raz, M. Hanefeld, L. Xu, C. Caria, D. Williams-Herman, and H. Khatami, “Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus,” Diabetologia, vol. 49, no. 11, pp. 2564–2571, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Nonaka, T. Kakikawa, A. Sato et al., “Efficacy and safety of sitagliptin monotherapy in Japanese patients with type 2 diabetes,” Diabetes Research and Clinical Practice, vol. 79, no. 2, pp. 291–298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. J. Drucker and M. A. Nauck, “The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes,” The Lancet, vol. 368, no. 9548, pp. 1696–1705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Mu, J. Woods, Y.-P. Zhou et al., “Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes,” Diabetes, vol. 55, no. 6, pp. 1695–1704, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Gonçalves, E. Leal, A. Paiva et al., “Protective effects of the dipeptidyl peptidase IV inhibitor sitagliptin in the blood-retinal barrier in a type 2 diabetes animal model,” Diabetes, Obesity and Metabolism, vol. 14, no. 5, pp. 454–463, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. P. A. Read, F. Z. Khan, P. M. Heck, S. P. Hoole, and D. P. Dutka, “DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease,” Circulation, vol. 3, no. 2, pp. 195–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Vaghasiya, N. Sheth, Y. Bhalodia, and R. Manek, “Sitagliptin protects renal ischemia reperfusion induced renal damage in diabetes,” Regulatory Peptides, vol. 166, no. 1–3, pp. 48–54, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. W. J. Liu, S. H. Xie, Y. N. Liu et al., “Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 340, no. 2, pp. 248–255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Mega, E. Teixeira de Lemos, H. Vala et al., “Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat),” Experimental Diabetes Research, vol. 2011, Article ID 162092, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Yozai, K. Shikata, M. Sasaki et al., “Methotrexate prevents renal injury in experimental diabetic rats via anti-inflammatory actions,” Journal of the American Society of Nephrology, vol. 16, no. 11, pp. 3326–3338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Tone, K. Shikata, M. Sasaki et al., “Erythromycin ameliorates renal injury via anti-inflammatory effects in experimental diabetic rats,” Diabetologia, vol. 48, no. 11, pp. 2402–2411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Ohga, K. Shikata, K. Yozai et al., “Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-κB activation,” American Journal of Physiology: Renal Physiology, vol. 292, no. 4, pp. F1141–F1150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. R. G. Peterson, W. N. Shaw, M. A. Neel et al., “Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus,” ILAR Journal, vol. 32, no. 3, pp. 16–19, 1990. View at Google Scholar
  40. U. Janssen, A. O. Phillips, and J. Floege, “Rodent models of nephropathy associated with type II diabetes,” Journal of Nephrology, vol. 12, no. 3, pp. 159–172, 1999. View at Google Scholar · View at Scopus
  41. A. O. Phillips, U. Janssen, and J. Floege, “Progression of diabetic nephropathy. Insights from cell culture studies and animal models,” Kidney and Blood Pressure Research, vol. 22, no. 1-2, pp. 81–97, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Vandesompele, K. de Preter, F. Pattyn et al., “Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes,” Genome Biology, vol. 3, no. 7, p. RESEARCH0034, 2002. View at Google Scholar · View at Scopus
  43. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Reis, L. Ferreira, E. Teixeira-de-Lemos et al., “Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat),” Mediators of Inflammation, vol. 2010, Article ID 592760, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Xiang, D. T. Chao, and S. J. Korsmeyer, “BAX-induced cell death may not require interleukin 1β-converting enzyme-like proteases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 25, pp. 14559–14563, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. R. M. Kluck, M. Degli Esposti, G. Perkins et al., “The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol,” Journal of Cell Biology, vol. 147, no. 4, pp. 809–822, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Matsubara, S. Sugiyama, E. Akiyama et al., “Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes,” Circulation Journal, vol. 77, no. 5, pp. 1337–1344, 2013. View at Publisher · View at Google Scholar
  48. N. Apaijai, H. Pintana, S. C. Chattipakorn et al., “Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats,” British Journal of Pharmacology, vol. 169, no. 5, pp. 1048–1057, 2013. View at Publisher · View at Google Scholar
  49. A. Barnett, “DPP-4 inhibitors and their potential role in the management of type 2 diabetes,” International Journal of Clinical Practice, vol. 60, no. 11, pp. 1454–1470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Kirino, Y. Sato, T. Kamimoto, K. Kawazoe, K. Minakuchi, and Y. Nakahori, “Interrelationship of dipeptidyl peptidase IV (DPP4) with the development of diabetes, dyslipidaemia and nephropathy: A streptozotocin-induced model using wild-type and DPP4-deficient rats,” Journal of Endocrinology, vol. 200, no. 1, pp. 53–61, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Pala, E. Mannucci, A. Pezzatini et al., “Dipeptidyl peptidase-IV expression and activity in human glomerular endothelial cells,” Biochemical and Biophysical Research Communications, vol. 310, no. 1, pp. 28–31, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Augustyns, G. Bal, G. Thonus et al., “The unique properties of dipeptidyl-peptidase IV (DPP IV / CD26) and the therapeutic potential of DPP IV inhibitors,” Current Medicinal Chemistry, vol. 6, no. 4, pp. 311–327, 1999. View at Google Scholar · View at Scopus
  53. V. Matheeussen, L. Baerts, G. de Meyer et al., “Expression and spatial heterogeneity of dipeptidyl peptidases in endothelial cells of conduct vessels and capillaries,” The Biological Chemistry, vol. 392, no. 3, pp. 189–198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Fujita, T. Morii, H. Fujishima et al., “The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential,” Kidney International, vol. 85, no. 3, pp. 579–589, 2013. View at Google Scholar
  55. B. Picatoste, E. Ramírez, A. Caro-Vadillo et al., “Sitagliptin reduces cardiac apoptosis, hypertrophy and fibrosis primarily by insulin-dependent mechanisms in experimental type-II diabetes. Potential roles of GLP-1 isoforms,” PLoS ONE, vol. 8, no. 10, Article ID 0078330, 2013. View at Publisher · View at Google Scholar
  56. R. Kodera, K. Shikata, H. U. Kataoka et al., “Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes,” Diabetologia, vol. 54, no. 4, pp. 965–978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Kodera, K. Shikata, T. Takasuta et al., “Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes,” Biochemical and Biophysical Research Communications, vol. 443, no. 3, pp. 828–833, 2014. View at Publisher · View at Google Scholar
  58. J. F. Navarro and C. Mora, “Diabetes, inflammation, proinflammatory cytokines, and diabetic nephropathy,” TheScientificWorldJOURNAL, vol. 6, pp. 908–917, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Wang, S. Landheer, W. H. van Gilst et al., “Attenuation of renovascular damage in Zucker diabetic fatty rat by NWT-03, an egg protein hydrolysate with ACE- and DPP4-inhibitory Activity,” PLoS ONE, vol. 7, no. 10, Article ID e46781, 2012. View at Google Scholar
  60. Y.-G. Wu, H. Lin, X.-M. Qi et al., “Prevention of early renal injury by mycophenolate mofetil and its mechanism in experimental diabetes,” International Immunopharmacology, vol. 6, no. 3, pp. 445–453, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. A. D. Dobrian, Q. Ma, J. W. Lindsay et al., “Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice,” American Journal of Physiology: Endocrinology and Metabolism, vol. 300, no. 2, pp. E410–E421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Mezzano, A. Droguett, M. Eugenia Burgos et al., “Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy,” Kidney International, vol. 64, no. 86, pp. S64–S70, 2003. View at Google Scholar · View at Scopus
  63. T. Furuta, T. Saito, T. Ootaka et al., “The role of macrophages in diabetic glomerulosclerosis,” American Journal of Kidney Diseases, vol. 21, no. 5, pp. 480–485, 1993. View at Google Scholar · View at Scopus
  64. F. Chow, E. Ozols, D. J. Nikolic-Paterson, R. C. Atkins, and G. H. Tesch, “Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury,” Kidney International, vol. 65, no. 1, pp. 116–128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. V. Ninichuk, A. G. Khandoga, S. Segerer et al., “The role of interstitial macrophages in nephropathy of type 2 diabetic db/db mice,” American Journal of Pathology, vol. 170, no. 4, pp. 1267–1276, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Y. Chow, D. J. Nikolic-Paterson, E. Ozols, R. C. Atkins, B. J. Rollin, and G. H. Tesch, “Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice,” Kidney International, vol. 69, no. 1, pp. 73–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Morcos, A. A. R. Sayed, A. Bierhaus et al., “Activation of tubular epithelial cells in diabetic nephropathy,” Diabetes, vol. 51, no. 12, pp. 3532–3544, 2002. View at Google Scholar · View at Scopus
  68. C. Guijarro and J. Egido, “Transcription factor-κB (NF-κB) and renal disease,” Kidney International, vol. 59, no. 2, pp. 415–424, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. H. S. Lee, “Mechanisms and consequences of hypertriglyceridemia and cellular lipid accumulation in chronic kidney disease and metabolic syndrome,” Histology and Histopathology, vol. 26, no. 12, pp. 1599–1610, 2011. View at Google Scholar · View at Scopus
  70. S.-J. Kim, K. Winter, C. Nian, M. Tsuneoka, Y. Koda, and C. H. S. McIntosh, “Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic β-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the Forkhead transcription factor Foxo1, and down-regulation of bax expression,” The Journal of Biological Chemistry, vol. 280, no. 23, pp. 22297–22307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. Q. Wang and P. Brubaker, “Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice,” Diabetologia, vol. 45, no. 9, pp. 1263–1273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Marzioni, G. Alpini, S. Saccomanno et al., “Exendin-4, a glucagon-like peptide 1 receptor agonist, protects cholangiocytes from apoptosis,” Gut, vol. 58, no. 7, pp. 990–997, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. J.-H. Liu, F. Yin, L.-X. Guo, X.-H. Deng, and Y.-H. Hu, “Neuroprotection of geniposide against hydrogen peroxide induced PC12 cells injury: involvement of PI3 kinase signal pathway,” Acta Pharmacologica Sinica, vol. 30, no. 2, pp. 159–165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. Z. Qin, Z. Sun, J. Huang, Y. Hu, Z. Wu, and B. Mei, “Mutated recombinant human glucagon-like peptide-1 protects SH-SY5Y cells from apoptosis induced by amyloid-β peptide (1-42),” Neuroscience Letters, vol. 444, no. 3, pp. 217–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Zhan, H. L. Sun, H. Chen et al., “Glucagon-like peptide-1 (GLP-1) protects vascular endothelial cells against advanced glycation end products (AGEs)-induced apoptosis,” Medical Science Monitor, vol. 18, no. 7, pp. BR286–BR291, 2012. View at Publisher · View at Google Scholar
  76. A. Natalicchio, F. de Stefano, M. R. Orlando et al., “Exendin-4 prevents c-Jun N-terminal protein kinase activation by Tumor Necrosis Factor-α (TNFα) and inhibits TNFα-induced apoptosis in insulin-secreting cells,” Endocrinology, vol. 151, no. 5, pp. 2019–2029, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Quoyer, C. Longuet, C. Broca et al., “GLP-1 mediates antiapoptotic effect by phosphorylating bad through a β-arrestin 1-mediated ERK1/2 activation in pancreatic β-cells,” The Journal of Biological Chemistry, vol. 285, no. 3, pp. 1989–2002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Tews, S. Lehr, S. Hartwig, A. Osmers, W. Paslack, and J. Eckel, “Anti-apoptotic action of exendin-4 in INS-1 beta cells: comparative protein pattern analysis of isolated mitochondria,” Hormone and Metabolic Research, vol. 41, no. 4, pp. 294–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Hendarto, T. Inoguchi, Y. Maeda et al., “GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases,” Metabolism, vol. 61, no. 10, pp. 1422–1434, 2012. View at Publisher · View at Google Scholar · View at Scopus