Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 767185, 13 pages
http://dx.doi.org/10.1155/2014/767185
Research Article

Impaired Resolution of Inflammation in the Endoglin Heterozygous Mouse Model of Chronic Colitis

1Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
2Department of Immunology, University of Toronto, Toronto, ON, Canada M5S 1A8
3Keenan Research Centre in Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, ON, Canada M5B 1T8
4Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
5Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
6Division of Rheumatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
7Department of Periodontology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada M5G 1G6
8Institute of Medical Science, University of Toronto, Toronto, ON, Canada M5S 1A8

Received 14 March 2014; Revised 22 May 2014; Accepted 23 May 2014; Published 10 July 2014

Academic Editor: Jean-Marie Reimund

Copyright © 2014 Madonna R. Peter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. J. Maloy and F. Powrie, “Intestinal homeostasis and its breakdown in inflammatory bowel disease,” Nature, vol. 474, no. 7351, pp. 298–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Nathan and A. Ding, “Nonresolving inflammation,” Cell, vol. 140, no. 6, pp. 871–882, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. Chidlow Jr., D. Shukla, M. B. Grisham, and C. G. Kevil, “Pathogenic angiogenesis in IBD and experimental colitis: new ideas and therapeutic avenues,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 293, no. 1, pp. G5–G18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Deban, C. Correale, S. Vetrano, A. Malesci, and S. Danese, “Multiple pathogenic roles of microvasculature in inflammatory bowel disease: a jack of all trades,” American Journal of Pathology, vol. 172, no. 6, pp. 1457–1466, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Valluru, C. A. Staton, M. W. R. Reed, and N. J. Brown, “Transforming growth factor-β and endoglin signaling orchestrate wound healing,” Frontiers in Physiology, vol. 2, article 89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. de Kretser, R. E. O’Hehir, C. L. Hardy, and M. P. Hedger, “The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair,” Molecular and Cellular Endocrinology, vol. 359, no. 1-2, pp. 101–106, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. P. ten Dijke and H. M. Arthur, “Extracellular control of TGFβ signalling in vascular development and disease,” Nature Reviews Molecular Cell Biology, vol. 8, no. 11, pp. 857–869, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. O. Li, Y. Y. Wan, S. Sanjabi, A.-K. L. Robertson, and R. A. Flavell, “Transforming growth factor-β regulation of immune responses,” Annual Review of Immunology, vol. 24, pp. 99–146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. N. P. Barbara, J. L. Wrana, and M. Letarte, “Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-β superfamily,” The Journal of Biological Chemistry, vol. 274, no. 2, pp. 584–594, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Gougos and M. Letarte, “Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre-B leukemic cell line,” Journal of Immunology, vol. 141, no. 6, pp. 1925–1933, 1988. View at Google Scholar · View at Scopus
  11. R. Castonguay, E. D. Werner, R. G. Matthews et al., “Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth,” The Journal of Biological Chemistry, vol. 286, no. 34, pp. 30034–30046, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. P. ten Dijke, M.-J. Goumans, and E. Pardali, “Endoglin in angiogenesis and vascular diseases,” Angiogenesis, vol. 11, no. 1, pp. 79–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. K. A. McAllister, K. M. Grogg, D. W. Johnson et al., “Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1,” Nature Genetics, vol. 8, no. 4, pp. 345–351, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Pece, S. Vera, U. Cymerman, R. I. White Jr., J. L. Wrana, and M. Letarte, “Mutant endoglin in hereditary hemorrhagic telangiectasia type 1 is transiently expressed intracellularly and is not a dominant negative,” The Journal of Clinical Investigation, vol. 100, no. 10, pp. 2568–2579, 1997. View at Google Scholar · View at Scopus
  15. P. Lastres, T. Bellon, C. Cabañas et al., “Regulated expression on human macrophages of endoglin, an Arg-Gly-Asp-containing surface antigen,” European Journal of Immunology, vol. 22, no. 2, pp. 393–397, 1992. View at Google Scholar · View at Scopus
  16. O. W. Rokhlin, M. B. Cohen, H. Kubagawa, M. Letarte, and M. D. Cooper, “Differential expression of endoglin on fetal and adult hematopoietic cells in human bone marrow,” Journal of Immunology, vol. 154, no. 9, pp. 4456–4465, 1995. View at Google Scholar · View at Scopus
  17. S. St-Jacques, U. Cymerman, N. Pece, and M. Letarte, “Molecular characterization and in situ localization of murine endoglin reveal that it is a transforming growth factor-β binding protein of endothelial and stromal cells,” Endocrinology, vol. 134, no. 6, pp. 2645–2657, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Dupuis-Girod, S. Giraud, E. Decullier et al., “Hemorrhagic hereditary telangiectasia (Rendu-Osler disease) and infectious diseases: an underestimated association,” Clinical Infectious Diseases, vol. 44, no. 6, pp. 841–845, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Mathis, S. Dupuis-Girod, H. Plauchu et al., “Cerebral abscesses in hereditary haemorrhagic telangiectasia: a clinical and microbiological evaluation,” Clinical Neurology and Neurosurgery, vol. 114, no. 3, pp. 235–240, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. S. K. Cho, A. Bourdeau, M. Letarte, and J. C. Zúñiga-Pflücker, “Expression and function of CD105 during the onset of hematopoiesis from Flk1+ precursors,” Blood, vol. 98, no. 13, pp. 3635–3642, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. L. W. van Laake, S. Van Den Driesche, S. Post et al., “Endoglin has a crucial role in blood cell-mediated vascular repair,” Circulation, vol. 114, no. 21, pp. 2288–2297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Bourdeau, D. J. Dumont, and M. Letarte, “A murine model of hereditary hemorrhagic telangiectasia,” The Journal of Clinical Investigation, vol. 104, no. 10, pp. 1343–1351, 1999. View at Google Scholar · View at Scopus
  23. A. Bourdeau, M. E. Faughnan, M.-L. McDonald, A. D. Paterson, I. R. Wanless, and M. Letarte, “Potential role of modifier genes influencing transforming growth factor-β1 levels in the development of vascular defects in endoglin heterozygous mice with hereditary hemorrhagic telangiectasia,” American Journal of Pathology, vol. 158, no. 6, pp. 2011–2020, 2001. View at Google Scholar · View at Scopus
  24. M. Jerkic, J. V. Rivas-Elena, M. Prieto et al., “Endoglin regulates nitric oxide-dependent vasodilatation,” The FASEB Journal, vol. 18, no. 3, pp. 609–611, 2004. View at Google Scholar · View at Scopus
  25. M. Jerkic, M. Peter, D. Ardelean, M. Fine, M. A. Konerding, and M. Letarte, “Dextran sulfate sodium leads to chronic colitis and pathological angiogenesis in endoglin heterozygous mice,” Inflammatory Bowel Diseases, vol. 16, no. 11, pp. 1859–1870, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Lopez-Dee, K. Pidcock, and L. S. Gutierrez, “Thrombospondin-1: multiple paths to inflammation,” Mediators of Inflammation, vol. 2011, Article ID 296069, 10 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Heinke, L. Wehofsits, Q. Zhou et al., “BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis,” Circulation Research, vol. 103, no. 8, pp. 804–812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Helbing, R. Rothweiler, E. Ketterer et al., “BMP activity controlled by BMPER regulates the proinflammatory phenotype of endothelium,” Blood, vol. 118, no. 18, pp. 5040–5049, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Weigmann, I. Tubbe, D. Seidel, A. Nicolaev, C. Becker, and M. F. Neurath, “Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue,” Nature Protocols, vol. 2, no. 10, pp. 2307–2311, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Barman, D. Unold, K. Shifley et al., “Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract,” Infection and Immunity, vol. 76, no. 3, pp. 907–915, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Petnicki-Ocwieja, T. Hrncir, Y.-J. Liu et al., “Nod2 is required for the regulation of commensal microbiota in the intestine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 37, pp. 15813–15818, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J.-P. Furet, O. Firmesse, M. Gourmelon et al., “Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR,” FEMS Microbiology Ecology, vol. 68, no. 3, pp. 351–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Kanwar and P. Kubes, “Mast cells contribute to ischemia-reperfusion-induced granulocyte infiltration and intestinal dysfunction,” American Journal of Physiology, vol. 267, no. 2, part 1, pp. G316–G321, 1994. View at Google Scholar · View at Scopus
  34. M. Jerkic, V. Sotov, and M. Letarte, “Oxidative stress contributes to endothelial dysfunction in mouse models of hereditary hemorrhagic telangiectasia,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 686972, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. C. X. Sun, G. P. Downey, F. Zhu, A. L. Y. Koh, H. Thang, and M. Glogauer, “Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass,” Blood, vol. 104, no. 12, pp. 3758–3765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Perše and A. Cerar, “Dextran sodium sulphate colitis mouse model: traps and tricks,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 718617, 13 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. Y.-Q. Zhang, S. Resta, B. Jung, K. E. Barrett, and N. Sarvetnick, “Upregulation of activin signaling in experimental colitis,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 297, no. 4, pp. G768–G780, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. L. Li and L. G. Ng, “Peeking into the secret life of neutrophils,” Immunologic Research, vol. 53, no. 1–3, pp. 168–181, 2012. View at Publisher · View at Google Scholar
  39. A. W. Segal, “How neutrophils kill microbes,” Annual Review of Immunology, vol. 23, pp. 197–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Stolk, T. J. Hiltermann, J. H. Dijkman, and A. J. Verhoeven, “Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol,” American Journal of Respiratory Cell and Molecular Biology, vol. 11, no. 1, pp. 95–102, 1994. View at Google Scholar · View at Scopus
  41. N. G. Frangogiannis, G. Ren, O. Dewald et al., “Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts,” Circulation, vol. 111, no. 22, pp. 2935–2942, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. N. G. Frangogiannis, “Regulation of the inflammatory response in cardiac repair,” Circulation Research, vol. 110, no. 1, pp. 159–173, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. S. M. Krishna and J. Golledge, “The role of thrombospondin-1 in cardiovascular health and pathology,” International Journal of Cardiology, vol. 168, no. 2, pp. 692–706, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. D. S. Ardelean, M. Jerkic, M. Yin et al., “Endoglin and activin receptor-like kinase 1 heterozygous mice have a distinct pulmonary and hepatic angiogenic profile and response to anti-VEGF treatment,” Angiogenesis, vol. 17, no. 1, pp. 129–146, 2014. View at Publisher · View at Google Scholar
  45. S. Park, T. A. Dimaio, W. Liu, S. Wang, C. M. Sorenson, and N. Sheibani, “Endoglin regulates the activation and quiescence of endothelium by participating in canonical and non-canonical TGF-β signaling pathways,” Journal of Cell Science, vol. 126, part 6, pp. 1392–1405, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. M. P. Hedger, W. R. Winnall, D. J. Phillips, and D. M. de Kretser, “The regulation and functions of activin and follistatin in inflammation and immunity,” Vitamins and Hormones, vol. 85, pp. 255–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Dohi, C. Ejima, R. Kato et al., “Therapeutic potential of follistatin for colonic inflammation in mice,” Gastroenterology, vol. 128, no. 2, pp. 411–423, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Moser, O. Binder, Y. Wu et al., “BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation,” Molecular and Cellular Biology, vol. 23, no. 16, pp. 5664–5679, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Yao, M. Jumabay, A. Ly et al., “Crossveinless 2 regulates bone morphogenetic protein 9 in human and mouse vascular endothelium,” Blood, vol. 119, no. 21, pp. 5037–5047, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Mehrad, M. P. Keane, and R. M. Strieter, “Chemokines as mediators of angiogenesis,” Thrombosis and Haemostasis, vol. 97, no. 5, pp. 755–762, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Miyake, S. Goodison, V. Urquidi, E. Gomes Giacoia, and C. J. Rosser, “Expression of CXCL1 in human endothelial cells induces angiogenesis through the CXCR2 receptor and the ERK1/2 and EGF pathways,” Laboratory Investigation, vol. 93, no. 7, pp. 768–778, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. D. S. Ardelean, M. Yin, M. Jerkic et al., “Anti-VEGF therapy reduces intestinal inflammation in Endoglin heterozygous mice subjected to experimental colitis,” Angiogenesis, vol. 17, no. 3, pp. 641–659, 2014. View at Publisher · View at Google Scholar
  53. E. Li, C. M. Hamm, A. S. Gulati et al., “Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition,” PLoS ONE, vol. 7, no. 6, Article ID e26284, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Z. Rahman, D. J. B. Marks, B. H. Hayee, A. M. Smith, S. L. Bloom, and A. W. Segal, “Phagocyte dysfunction and inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 14, no. 10, pp. 1443–1452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. S. J. Klebanoff, “Myeloperoxidase: friend and foe,” Journal of Leukocyte Biology, vol. 77, no. 5, pp. 598–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Ojeda-Fernandez, L. Recio-Poveda, P. Lastres, H. M. Arthur, C. Bernabeu, and L. M. Botella, “Characterization of a myeloid specific endoglin knock-out mouse: the role of endoglin in the innate immune response,” Hematology Reports, vol. 5, supplement 1, p. 15, 2013. View at Google Scholar