Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 870634, 9 pages
http://dx.doi.org/10.1155/2014/870634
Research Article

Macadamia Oil Supplementation Attenuates Inflammation and Adipocyte Hypertrophy in Obese Mice

1Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, Avenida Lineu Prestes 1524, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
2Programa de Pós-Graduação em Ciência da Motricidade, Departamento de Educação Física, Universidade Estadual Paulista (UNESP), 13506-900 Rio Claro, SP, Brazil
3Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
4Departamento de Ciências Biológicas, Laboratório de Movimento Humano da Universidade São Judas Tadeu, 05503-001 São Paulo, SP, Brazil
5Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, 04023-901 São Paulo, SP, Brazil
6Departamento de Fisiologia Geral, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil
7Programa de Pós-Graduação em Ciência do Movimento Humano, Instituto de Ciências da Atividade Física e Esporte, Universidade Cruzeiro do Sul, 01506-000 São Paulo, SP, Brazil

Received 25 April 2014; Revised 2 July 2014; Accepted 20 July 2014; Published 22 September 2014

Academic Editor: Fábio Santos Lira

Copyright © 2014 Edson A. Lima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Arapostathi, I. P. Tzanetakou, A. D. Kokkinos et al., “A diet rich in monounsaturated fatty acids improves the lipid profile of mice previously on a diet rich in saturated fatty acids,” Angiology, vol. 62, no. 8, pp. 636–640, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Hiraoka-Yamamoto, K. Ikeda, H. Negishi et al., “Serum lipid effects of a monounsaturated (palmitoleic) fatty acid-rich diet based on macadamia nuts in healthy, young japanese women,” Clinical and Experimental Pharmacology and Physiology, vol. 31, supplement 2, pp. S37–S38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. P. Mensink, P. L. Zock, A. D. M. Kester, and M. B. Katan, “Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials,” The American Journal of Clinical Nutrition, vol. 77, no. 5, pp. 1146–1155, 2003. View at Google Scholar · View at Scopus
  4. T. A. Nicklas, J. S. Hampl, C. A. Taylor, V. J. Thompson, and W. C. Heird, “Monounsaturated fatty acid intake by children and adults: temporal trends and demographic differences,” Nutrition Reviews, vol. 62, no. 4, pp. 132–141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. L. G. Gillingham, S. Harris-Janz, and P. J. H. Jones, “Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors,” Lipids, vol. 46, no. 3, pp. 209–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Haghighatdoost, M. J. Hosseinzadeh-Attar, A. Kabiri, M. Eshraghian, and A. Esmaillzadeh, “Effect of substituting saturated with monounsaturated fatty acids on serum visfatin levels and insulin resistance in overweight women: a randomized cross-over clinical trial,” International Journal of Food Sciences and Nutrition, vol. 63, no. 7, pp. 772–781, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. L. S. Maguire, S. M. O'Sullivan, K. Galvin, T. P. O'Connor, and N. M. O'Brien, “Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut,” International Journal of Food Sciences and Nutrition, vol. 55, no. 3, pp. 171–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. E. Griel, Y. Cao, D. D. Bagshaw, A. M. Cifelli, B. Holub, and P. M. Kris-Etherton, “A Macadamia nut-rich diet reduces total and LDL-cholesterol in mildly hypercholesterolemic men and women,” Journal of Nutrition, vol. 138, no. 4, pp. 761–767, 2008. View at Google Scholar · View at Scopus
  9. J. D. Curb, G. Wergowske, J. C. Dobbs, R. D. Abbott, and B. Huang, “Serum lipid effects of a high-monounsaturated fat diet based on macadamia nuts,” Archives of Internal Medicine, vol. 160, no. 8, pp. 1154–1158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. N. R. Matthan, A. Dillard, J. L. Lecker, B. Ip, and A. H. Lichtenstein, “Effects of dietary palmitoleic acid on plasma lipoprotein profile and aortic cholesterol accumulation are similar to those of other unsaturated fatty acids in the f1b golden syrian hamster,” The Journal of Nutrition, vol. 139, no. 2, pp. 215–221, 2009. View at Google Scholar · View at Scopus
  11. H. Cao, K. Gerhold, J. R. Mayers, M. M. Wiest, S. M. Watkins, and G. S. Hotamisligil, “Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism,” Cell, vol. 134, no. 6, pp. 933–944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Jensen, “Role of body fat distribution and the metabolic complications of obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. S57–S63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. L. Kien, “Dietary interventions for metabolic syndrome: role of modifying dietary fats,” Current Diabetes Reports, vol. 9, no. 1, pp. 43–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. V. T. Samuel, K. F. Petersen, and G. I. Shulman, “Lipid-induced insulin resistance: unravelling the mechanism,” The Lancet, vol. 375, no. 9733, pp. 2267–2277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D.-H. Han, P. A. Hansen, H. H. Host, and J. O. Holloszy, “Insulin resistance of muscle glucose transport in rats fed a high-fat diet: a reevaluation,” Diabetes, vol. 46, no. 11, pp. 1761–1767, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. M. F. Gregor and G. S. Hotamisligil, “Inflammatory mechanisms in obesity,” Annual Review of Immunology, vol. 29, pp. 415–445, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. H. H. Lim, S. O. Lee, S. Y. Kim, S. J. Yang, and Y. Lim, “Anti-inflammatory and antiobesity effects of mulberry leaf and fruit extract on high fat diet-induced obesity,” Experimental Biology and Medicine, vol. 238, no. 10, pp. 1160–1169, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Reyna, S. Ghosh, P. Tantiwong et al., “Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects,” Diabetes, vol. 57, no. 10, pp. 2595–2602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Jin, X. Zhang, Z. Lu et al., “Acid sphingomyelinase plays a key role in palmitic acid-amplified inflammatory signaling triggered by lipopolysaccharide at low concentrations in macrophages,” American Journal of Physiology: Endocrinology and Metabolism, vol. 305, no. 7, pp. E853–E867, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Waki and P. Tontonoz, “Endocrine functions of adipose tissue,” Annual Review of Pathology, vol. 2, pp. 31–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Ouchi, J. L. Parker, J. J. Lugus, and K. Walsh, “Adipokines in inflammation and metabolic disease,” Nature Reviews Immunology, vol. 11, no. 2, pp. 85–97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante Jr., “Obesity is associated with macrophage accumulation in adipose tissue,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1796–1808, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Patsouris, P.-P. Li, D. Thapar, J. Chapman, J. M. Olefsky, and J. G. Neels, “Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals,” Cell Metabolism, vol. 8, no. 4, pp. 301–309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. L. N. Masi, A. R. Martins, J. C. R. Neto et al., “Sunflower oil supplementation has proinflammatory effects and does not reverse insulin resistance in obesity induced by high-fat diet in C57BL/6 mice,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 945131, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. R. Vinolo, H. G. Rodrigues, W. T. Festuccia et al., “Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 303, no. 2, pp. E272–E282, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Papadimitriou and I. Van Bruggen, “The effects of malnutrition on murine peritoneal macrophages,” Experimental and Molecular Pathology, vol. 49, no. 2, pp. 161–170, 1988. View at Publisher · View at Google Scholar · View at Scopus
  27. N. P. Sen and B. Donaldson, “Improved colorimetric method for determining nitrate and nitrate in foods,” Journal of the Association of Official Analytical Chemists, vol. 61, no. 6, pp. 1389–1394, 1978. View at Google Scholar · View at Scopus
  28. P. Chomczynski and N. Sacchi, “Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction,” Analytical Biochemistry, vol. 162, no. 1, pp. 156–159, 1987. View at Google Scholar · View at Scopus
  29. R. Higuchi, G. Dollinger, P. S. Walsh, and R. Griffith, “Simultaneous amplification and detection of specific DNA sequences,” Bio/Technology, vol. 10, no. 4, pp. 413–417, 1992. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Liu and D. A. Saint, “Validation of a quantitative method for real time PCR kinetics,” Biochemical and Biophysical Research Communications, vol. 294, no. 2, pp. 347–353, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Matsuda and I. Shimomura, “Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer,” Obesity Research and Clinical Practice, vol. 7, no. 5, pp. e330–e341, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Fernandes-Santos, R. E. Carneiro, L. de Souza Mendonca, M. B. Aguila, and C. A. Mandarim-de-Lacerda, “Pan-PPAR agonist beneficial effects in overweight mice fed a high-fat high-sucrose diet,” Nutrition, vol. 25, no. 7-8, pp. 818–827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. C. Fraulob, R. Ogg-Diamantino, C. Fernandes-Santos, M. B. Aguila, and C. A. Mandarim-de-Lacerda, “A mouse model of metabolic syndrome: insulin resistance, fatty liver and Non-Alcoholic Fatty Pancreas Disease (NAFPD) in C57BL/6 mice fed a high fat diet,” Journal of Clinical Biochemistry and Nutrition, vol. 46, no. 3, pp. 212–223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. G. D. Pimentel, A. P. S. Dornellas, J. C. Rosa et al., “High-fat diets rich in soy or fish oil distinctly alter hypothalamic insulin signaling in rats,” Journal of Nutritional Biochemistry, vol. 23, no. 7, pp. 822–828, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Chen, D. J. Magliano, and P. Z. Zimmet, “The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives,” Nature Reviews Endocrinology, vol. 8, no. 4, pp. 228–236, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. C. J. Rebello, F. L. Greenway, and J. W. Finley, “A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities,” Obesity Reviews, vol. 15, no. 5, pp. 392–407, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. K. E. Wellen and G. S. Hotamisligil, “Inflammation, stress, and diabetes,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1111–1119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. L. Gray and A. J. Vidal-Puig, “Adipose tissue expandability in the maintenance of metabolic homeostasis,” Nutrition Reviews, vol. 65, supplement 1, pp. S7–S12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. T. S. Higa, A. V. Spinola, M. H. Fonseca-Alaniz, and F. S. Anna Evangelista, “Comparison between cafeteria and high-fat diets in the induction of metabolic dysfunction in mice,” International Journal of Physiology, Pathophysiology and Pharmacology, vol. 6, no. 1, pp. 47–54, 2014. View at Google Scholar · View at Scopus
  40. H. Kwon and J. E. Pessin, “Adipokines mediate inflammation and insulin resistance,” Frontiers in Endocrinology, vol. 4, article 71, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. G. M. Lord, G. Matarese, J. K. Howard, R. J. Baker, S. R. Bloom, and R. I. Lechler, “Leptin modulates the T-cell immune response and reverses starvation- induced immunosuppression,” Nature, vol. 394, no. 6696, pp. 897–901, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Marzullo, A. Minocci, P. Giarda et al., “Lymphocytes and immunoglobulin patterns across the threshold of severe obesity,” Endocrine, vol. 45, no. 3, pp. 392–400, 2014. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Santos-Alvarez, R. Goberna, and V. Sánchez-Margalet, “Human leptin stimulates proliferation and activation of human circulating monocytes,” Cellular Immunology, vol. 194, no. 1, pp. 6–11, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. S. C. Acedo, S. Gambero, F. G. P. Cunha, I. Lorand-Metze, and A. Gambero, “Participation of leptin in the determination of the macrophage phenotype: An additional role in adipocyte and macrophage crosstalk,” In Vitro Cellular and Developmental Biology - Animal, vol. 49, no. 6, pp. 473–478, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Okuno, H. Tamemoto, K. Tobe et al., “Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats,” Journal of Clinical Investigation, vol. 101, no. 6, pp. 1354–1361, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Rigamonti, G. Chinetti-Gbaguidi, and B. Staels, “Regulation of macrophage functions by PPAR- α, PPAR- γ, and LXRs in mice and men,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 6, pp. 1050–1059, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Fujisaka, I. Usui, A. Bukhari et al., “Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice,” Diabetes, vol. 58, no. 11, pp. 2574–2582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, “The chemokine system in diverse forms of macrophage activation and polarization,” Trends in Immunology, vol. 25, no. 12, pp. 677–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. E.-G. Hong, J. K. Hwi, Y.-R. Cho et al., “Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle,” Diabetes, vol. 58, no. 11, pp. 2525–2535, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, “Obesity induces a phenotypic switch in adipose tissue macrophage polarization,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 175–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Tilg and A. R. Moschen, “Inflammatory mechanisms in the regulation of insulin resistance,” Molecular Medicine, vol. 14, no. 3-4, pp. 222–231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. M. A. McArdle, O. M. Finucane, R. M. Connaughton, A. M. McMorrow, and H. M. Roche, “Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies,” Frontiers in Endocrinology, vol. 4, article 52, Article ID Article 52, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Jager, T. Grémeaux, M. Cormont, Y. Le Marchand-Brustel, and J.-F. Tanti, “Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression,” Endocrinology, vol. 148, no. 1, pp. 241–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Spranger, A. Kroke, M. Möhlig et al., “Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based european prospective investigation into cancer and nutrition (epic)-potsdam study,” Diabetes, vol. 52, no. 3, pp. 812–817, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Zhong, Y.-S. Chiou, M.-H. Pan, and F. Shahidi, “Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages,” Food Chemistry, vol. 134, no. 2, pp. 742–748, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Han, J. H. Lee, C. Kim et al., “Capillarisin inhibits iNOS, COX-2 expression, and proinflammatory cytokines in LPS-induced RAW 264.7 macrophages via the suppression of ERK, JNK, and NF-κB activation,” Immunopharmacology and Immunotoxicology, vol. 35, no. 1, pp. 34–42, 2013. View at Publisher · View at Google Scholar · View at Scopus