About this Journal Submit a Manuscript Table of Contents
Mediators of Inflammation
Volume 2014 (2014), Article ID 924184, 14 pages
http://dx.doi.org/10.1155/2014/924184
Clinical Study

Metabolic and Genetic Screening of Electromagnetic Hypersensitive Subjects as a Feasible Tool for Diagnostics and Intervention

1Centre of Innovative Biotechnological Investigations (Cibi-Nanolab), Novoslobodskaya Street 36/1, Moscow 127055, Russia
2Active Longevity Clinic “Institut Krasoty na Arbate”, 8 Maly Nikolopeskovsky lane, Moscow 119002, Russia
3Natural Health Farm, 39 Jln Pengacara U1/48, Seksyen U1, Temasya Industrial Park, 40150 Shah Alam, Selangor, Malaysia
42nd Dermatology Division, Dermatology Institute (IDI IRCCS), Via Monti di Creta 104, 00167 Rome, Italy
5Department of Biomedical Sciences and Morpho-Functional Imaging, Polyclinic University of Messina, 98125 Messina, Italy

Received 28 November 2013; Accepted 26 February 2014; Published 9 April 2014

Academic Editor: Beatriz De las Heras

Copyright © 2014 Chiara De Luca et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Levallois, “Hypersensitivity of human subjects to environmental electric and magnetic field exposure: a review of the literature,” Environmental Health Perspectives, vol. 110, supplement 4, pp. 613–618, 2002. View at Google Scholar · View at Scopus
  2. S. J. Genuis and C. T. Lipp, “Electromagnetic hypersensitivity: fact or fiction?” Science of the Total Environment, vol. 414, pp. 103–112, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Richman, A. J. Munroe, and Y. Siddiqui, “A pilot neighbourhood study towards establishing a benchmark for reducing electromagnetic field levels within single family residential dwellings,” Science of the Total Environment, vol. 466-467, pp. 625–634, 2014. View at Publisher · View at Google Scholar
  4. World Health Organization, “Electromagnetic Fields,” 2011, http://www.who.int/peh-emf/en/.
  5. H. Seitz, D. Stinner, T. Eikmann, C. Herr, and M. Röösli, “Electromagnetic hypersensitivity (EHS) and subjective health complaints associated with electromagnetic fields of mobile phone communication-a literature review published between 2000 and 2004,” Science of the Total Environment, vol. 349, no. 1–3, pp. 45–55, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Röösli and K. Hug, “Wireless communication fields and non-specific symptoms of ill health: a literature review,” Wiener Medizinische Wochenschrift, vol. 161, no. 9-10, pp. 240–250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. de Luca, D. Raskovic, V. Pacifico, J. C. S. Thai, and L. Korkina, “The search for reliable biomarkers of disease in multiple chemical sensitivity and other environmental intolerances,” International Journal of Environmental Research and Public Health, vol. 8, no. 7, pp. 2770–2797, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Gangi and O. Johansson, “A theoretical model based upon mast cells and histamine to explain the recently proclaimed sensitivity to electric and/or magnetic fields in humans,” Medical Hypotheses, vol. 54, no. 4, pp. 663–671, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Johansson, “Disturbance of the immune system by electromagnetic fields—a potentially underlying cause for cellular damage and tissue repair reduction which could lead to disease and impairment,” Pathophysiology, vol. 16, no. 2-3, pp. 157–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Röösli, “Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: a systematic review,” Environmental Research, vol. 107, no. 2, pp. 277–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. G. J. Rubin, R. Nieto-Hernandez, and S. Wessely, “Idiopathic environmental intolerance attributed to electromagnetic fields (formerly “electromagnetic hypersensitivity”): an updated systematic review of provocation studies,” Bioelectromagnetics, vol. 31, no. 1, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Köteles, R. Szemerszky, M. Gubányi et al., “Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) and electrosensibility (ES)—are they connected?” International Journal of Hygiene and Environmental Health, vol. 216, no. 3, pp. 362–370, 2013. View at Publisher · View at Google Scholar
  13. L. Hillert, B. Kolmodin-Hedman, P. Eneroth, and B. B. Arnetz, “The effect of supplementary antioxidant therapy in patients who report hypersensitivity to electricity: a randomized controlled trial,” Medscape General Medicine, vol. 3, no. 2, p. 11, 2001. View at Google Scholar · View at Scopus
  14. G. J. Rubin, J. Das Munshi, and S. Wessely, “A systematic review of treatments for electromagnetic hypersensitivity,” Psychotherapy and Psychosomatics, vol. 75, no. 1, pp. 12–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Schröttner and N. Leitgeb, “Sensitivity to electricity—temporal changes in Austria,” BMC Public Health, vol. 8, article 310, 7 pages, 2008. View at Publisher · View at Google Scholar
  16. M. Hagström, J. Auranen, and R. Ekman, “Electromagnetic hypersensitive Finns: symptoms, perceived sources and treatments, a questionnaire study,” Pathophysiology, vol. 20, no. 2, pp. 117–122, 2013. View at Publisher · View at Google Scholar
  17. M. Witthöft and G. J. Rubin, “Are media warnings about the adverse health effects of modern life self-fulfilling? An experimental study on idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF),” Journal of Psychosomatic Research, vol. 74, no. 3, pp. 206–212, 2013. View at Publisher · View at Google Scholar
  18. World Health Organization, Establishing a Dialogue on Risks from Electromagnetic Fields, Radiation and Environmental Health Deparment of Protection of the Human Environment, Who Library, Geneva, Switzerland, 2002.
  19. L. Korkina, M. G. Scordo, I. Deeva, E. Cesareo, and C. de Luca, “The chemical defensive system in the pathobiology of idiopathic environment-associated diseases,” Current Drug Metabolism, vol. 10, no. 8, pp. 914–931, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Palmquist, A. S. Claeson, G. Neely, B. Stenberg, and S. Nordin, “Overlap in prevalence between various types of environmental intolerance,” International Journal of Hygiene and Environmental Health, 2013. View at Publisher · View at Google Scholar
  21. S. J. Genuis, “Sensitivity-related illness: the escalating pandemic of allergy, food intolerance and chemical sensitivity,” Science of the Total Environment, vol. 408, no. 24, pp. 6047–6061, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. de Luca, G. Scordo, E. Cesareo, D. Raskovic, G. Genovesi, and L. Korkina, “Idiopathic environmental intolerances (IEI): from molecular epidemiology to molecular medicine,” Indian Journal of Experimental Biology, vol. 48, no. 7, pp. 625–635, 2010. View at Google Scholar · View at Scopus
  23. C. de Luca, M. G. Scordo, E. Cesareo et al., “Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes,” Toxicology and Applied Pharmacology, vol. 248, no. 3, pp. 285–292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Caccamo, E. Cesareo, S. Mariani et al., “Xenobiotic sensor- and metabolism-related gene variants in environmental sensitivity-related illnesses: a survey on the Italian population,” Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 831969, 9 pages, 2013. View at Publisher · View at Google Scholar
  25. M. R. Cullen, “Multiple chemical sensitivities: summary and directions for future investigators,” Occupational Medicine, vol. 2, no. 4, pp. 801–804, 1987. View at Google Scholar · View at Scopus
  26. C. S. Miller and T. J. Prihoda, “The environmental exposure and sensitivity inventory (EESI): a standardized approach for measuring chemical intolerances for research and clinical applications,” Toxicology and Industrial Health, vol. 15, no. 3-4, pp. 370–385, 1999. View at Google Scholar · View at Scopus
  27. K. R. Fabig, “Das multiple chemikalien-sensitivität-syndrom (MCS). Können fragebögen, IgE und SPECT zur Diagnostik beitragen?” Hamburger Ärzteblatt, vol. 12, pp. 600–603, 2000. View at Google Scholar
  28. G. E. Brown, G. M. Silver, J. Reiff, R. C. Allen, and M. P. Fink, “Polymorphonuclear neutrophil chemiluminescence in whole blood from blunt trauma patients with multiple injuries,” Journal of Trauma, vol. 46, no. 2, pp. 297–305, 1999. View at Google Scholar · View at Scopus
  29. T. Esko, M. Mezzavilla, M. Nelis et al., “Genetic characterization of northeastern Italian population isolates in the context of broader European genetic diversity,” European Journal of Human Genetics, vol. 21, no. 6, pp. 659–665, 2013. View at Publisher · View at Google Scholar
  30. G. Giovannoni, J. M. Land, G. Keir, E. J. Thompson, and S. J. Heales, “Adaptation of the nitrate reductase and Griess reaction methods for the measurement of serum nitrate plus nitrite levels,” Annals of Clinical Biochemistry, vol. 34, no. 2, pp. 193–198, 1997. View at Google Scholar · View at Scopus
  31. N. J. Miller, C. Rice-Evans, and M. J. Davies, “A new method for measuring antioxidant activity,” Biochemical Society Transactions, vol. 21, no. 2, p. 95S, 1993. View at Google Scholar · View at Scopus
  32. D. J. Reed, J. R. Babson, P. W. Beatty, A. E. Brodie, W. W. Ellis, and D. W. Potter, “High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiol and disulfides,” Analytical Biochemistry, vol. 106, no. 1, pp. 55–62, 1980. View at Google Scholar · View at Scopus
  33. C. de Luca, I. Deeva, S. Mariani, G. Maiani, A. Stancato, and L. Korkina, “Monitoring antioxidant defenses and free radical production in space-flight, aviation and railway engine operators, for the prevention and treatment of oxidative stress, immunological impairment, and pre-mature cell aging,” Toxicology and Industrial Health, vol. 25, no. 4-5, pp. 259–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Sun, L. W. Oberley, and Y. Li, “A simple method for clinical assay of superoxide dismutase,” Clinical Chemistry, vol. 34, no. 3, pp. 497–500, 1988. View at Google Scholar · View at Scopus
  35. H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  36. W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione S-transferases. The first enzymatic step in mercapturic acid formation,” The Journal of Biological Chemistry, vol. 249, no. 22, pp. 7130–7139, 1974. View at Google Scholar · View at Scopus
  37. D. E. Paglia and W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1, pp. 158–169, 1967. View at Google Scholar · View at Scopus
  38. C. de Luca, A. Filosa, M. Grandinetti, F. Maggio, M. Lamba, and S. Passi, “Blood antioxidant status and urinary levels of catecholamine metabolites in β-thalassemia,” Free Radical Research, vol. 30, no. 6, pp. 453–462, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Primavera, S. Fustinoni, A. Biroccio et al., “Glutathione transferases and glutathionylated hemoglobin in workers exposed to low doses of 1,3-butadiene,” Cancer Epidemiology Biomarkers & Prevention, vol. 17, no. 11, pp. 3004–3012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Leitgeb and J. Schröttner, “Electrosensibility and electromagnetic hypersensitivity,” Bioelectromagnetics, vol. 24, no. 6, pp. 387–394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. O. Elmas, “Effects of electromagnetic field exposure on the heart: a systematic review,” Toxicology and Industrial Health, 2013. View at Publisher · View at Google Scholar
  42. A. Costa, V. Branca, C. Minoia, P. D. Pigatto, and G. Guzzi, “Heavy metals exposure and electromagnetic hypersensitivity,” Science of the Total Environment, vol. 408, no. 20, pp. 4919–4920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Österberg, R. Persson, B. Karlson, F. C. Eek, and P. Ørbæk, “Personality, mental distress, and subjective health complaints among persons with environmental annoyance,” Human & Experimental Toxicology, vol. 26, no. 3, pp. 231–241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Tuengler and L. von Klitzing, “Hypothesis on how to measure electromagnetic hypersensitivity,” Electromagnetic Biology and Medicine, vol. 32, no. 3, pp. 281–290, 2013. View at Publisher · View at Google Scholar
  45. S. Eltiti, D. Wallace, K. Zougkou et al., “Development and evaluation of the electromagnetic hypersensitivity questionnaire,” Bioelectromagnetics, vol. 28, no. 2, pp. 137–151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. C. H. Mueller, H. Krueger, and C. Schlerz, “Project NEMESIS: perception of a 50 Hz electric and magnetic field at low intensities (laboratory experiment),” Bioelectromagnetics, vol. 23, no. 1, pp. 26–36, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Korkina, I. Deeva, G. Ibragimova, A. Shakula, A. Luci, and C. de Luca, “Coenzyme Q10-containing composition (Immugen) protects against occupational and environmental stress in workers of the gas and oil industry,” BioFactors, vol. 18, no. 1–4, pp. 245–254, 2003. View at Google Scholar · View at Scopus
  48. C. de Luca and G. Valacchi, “Surface lipids as multifunctional mediators of skin responses to environmental stimuli,” Mediators of Inflammation, vol. 2010, Article ID 321494, 11 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. V. Kostyuk, A. Potapovich, A. Stancato et al., “Photo-oxidation products of skin surface squalene mediate metabolic and inflammatory responses to solar UV in human keratinocytes,” PLoS ONE, vol. 7, no. 8, article e44472, 2012. View at Publisher · View at Google Scholar
  50. C. Lubrano, G. Genovesi, P. Specchia et al., “Obesity and metabolic comorbidities: environmental diseases?” Oxidative Medicine and Cell Longevity, vol. 2013, Article ID 640673, 9 pages, 2013. View at Publisher · View at Google Scholar
  51. N. Dahmen, D. Ghezel-Ahmadi, and A. Engel, “Blood laboratory findingsin patients suffering from self-perceived electromagnetic hypersensitivity (EHS),” Bioelectromagnetics, vol. 30, no. 4, pp. 299–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. International Programme on Chemical Safety/World Health Organization (IPCS/WHO), “Conclusion and recommendations of a wokshop on multiple chemical sensitivities (MCS),” Regulatory Toxicology and Pharmacology, vol. 24, pp. S79–S86, 1996. View at Google Scholar
  53. G. McKeown-Eyssen, C. Baines, D. E. Cole et al., “Case-control study of genotypes in multiple chemical sensitivity: CYP2D6, NAT1, NAT2, PON1, PON2 and MTHFR,” International Journal of Epidemiology, vol. 33, no. 5, pp. 971–978, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Schnakenberg, K.-R. Fabig, M. Stanulla et al., “A cross-sectional study of self-reported chemical-related sensitivity is associated with gene variants of drug-metabolizing enzymes,” Environmental Health: A Global Access Science Source, vol. 6, article 6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. N. D. Berg, H. B. Rasmussen, A. Linneberg et al., “Genetic susceptibility factors for multiple chemical sensitivity revisited,” International Journal of Hygiene and Environmental Health, vol. 213, no. 2, pp. 131–139, 2010. View at Publisher · View at Google Scholar · View at Scopus