Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 978678, 7 pages
http://dx.doi.org/10.1155/2014/978678
Research Article

Experimental Cannabinoid 2 Receptor-Mediated Immune Modulation in Sepsis

1Department of Pharmacology, Dalhousie University, Halifax, NS, Canada B3H 4R2
2Department of Anesthesia, Dalhousie University, Halifax, NS, Canada B3H 2Y9
3Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada B3H 4R2

Received 7 November 2013; Revised 25 February 2014; Accepted 4 March 2014; Published 3 April 2014

Academic Editor: Magdalena Klink

Copyright © 2014 J. Sardinha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.-L. Vincent, J. Rello, J. Marshall et al., “International study of the prevalence and outcomes of infection in intensive care units,” The Journal of the American Medical Association, vol. 302, no. 21, pp. 2323–2329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. N. K. Adhikari, R. A. Fowler, S. Bhagwanjee, and G. D. Rubenfeld, “Critical care and the global burden of critical illness in adults,” The Lancet, vol. 376, no. 9749, pp. 1339–1346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Global Sepsis Aliance, “World Sepsis Day,” 2012, http://www.world-sepsis-day.org.
  4. R. M. Kleinpell, B. T. Graves, and M. H. Ackerman, “Incidence, pathogenesis, and management of sepsis: an overview,” AACN Advanced Critical Care, vol. 17, no. 4, pp. 385–393, 2006. View at Google Scholar · View at Scopus
  5. R. C. Bone, “The pathogenesis of sepsis,” Annals of Internal Medicine, vol. 115, no. 6, pp. 457–469, 1991. View at Google Scholar · View at Scopus
  6. J. Cohen, “The immunopathogenesis of sepsis,” Nature, vol. 420, no. 6917, pp. 885–891, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. R. P. Dellinger, M. M. Levy, A. Rhodes et al., “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Medicine, vol. 39, no. 2, pp. 165–228, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Sardinha, C. Lehmann, and M. Kianian, “Targeting the endocannabinoid system to treat sepsis,” Signa Vitae, vol. 8, no. 1, pp. 9–14, 2013. View at Google Scholar · View at Scopus
  9. R. G. Pertwee, “Cannabinoid pharmacology: the first 66 years,” British Journal of Pharmacology, vol. 147, no. 1, pp. S163–S171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. W. A. Devane, L. Hanus, A. Breuer et al., “Isolation and structure of a brain constituent that binds to the cannabinoid receptor,” Science, vol. 258, no. 5090, pp. 1946–1949, 1992. View at Google Scholar · View at Scopus
  11. R. Mechoulam, S. Ben-Shabat, L. Hanus et al., “Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors,” Biochemical Pharmacology, vol. 50, no. 1, pp. 83–90, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. R. G. Pertwee and R. A. Ross, “Cannabinoid receptors and their ligands,” Prostaglandins, Leukotrienes and Essential Fatty Acids, vol. 66, no. 2-3, pp. 101–121, 2002. View at Publisher · View at Google Scholar
  13. S. Munro, K. L. Thomas, and M. Abu-Shaar, “Molecular characterization of a peripheral receptor for cannabinoids,” Nature, vol. 365, no. 6441, pp. 61–65, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Pacher and R. Mechoulam, “Is lipid signaling through cannabinoid 2 receptors part of a protective system?” Progress in Lipid Research, vol. 50, no. 2, pp. 193–211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Chuchawankul, M. Shima, N. E. Buckley, C. B. Hartmann, and K. L. McCoy, “Role of cannabinoid receptors in inhibiting macrophage costimulatory activity,” International Immunopharmacology, vol. 4, no. 2, pp. 265–278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Ehrhart, D. Obregon, T. Mori et al., “Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation,” Journal of Neuroinflammation, vol. 2, article 29, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. B. F. Cravatt, D. K. Giang, S. P. Mayfield, D. L. Boger, R. A. Lerner, and N. B. Gilula, “Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides,” Nature, vol. 384, no. 6604, pp. 83–87, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Ahn, M. K. McKinney, and B. F. Cravatt, “Enzymatic pathways that regulate endocannabinoid signaling in the nervous system,” Chemical Reviews, vol. 108, no. 5, pp. 1687–1707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Ince, “The microcirculation is the motor of sepsis,” Critical Care, vol. 9, supplement 4, pp. S13–S19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Spanos, S. Jhanji, A. Vivian-Smith, T. Harris, and R. M. Pearse, “Early microvascular changes in sepsis and severe sepsis,” Shock, vol. 33, no. 4, pp. 387–391, 2010. View at Google Scholar · View at Scopus
  21. M. Rajesh, P. Mukhopadhyay, S. Bátkai et al., “CB2-receptor stimulation attenuates TNF-α-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 293, no. 4, pp. H2210–H2218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Rajesh, H. Pan, P. Mukhopadhyay et al., “Pivotal Advance: cannabinoid-2 receptor agonist HU-308 protects against hepatic ischemia/reperfusion injury by attenuating oxidative stress, inflammatory response, and apoptosis,” Journal of Leukocyte Biology, vol. 82, no. 6, pp. 1382–1389, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. T. W. Klein, “Cannabinoid-based drugs as anti-inflammatory therapeutics,” Nature Reviews Immunology, vol. 5, no. 5, pp. 400–411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. H. Ramirez, J. Haskó, A. Skuba et al., “Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood-brain barrier dysfunction under inflammatory conditions,” The Journal of Neuroscience, vol. 32, no. 12, pp. 4004–4016, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Lehmann, F. Götz, L. Schuster, and J. Zhou, “Improved setup for intestinal intravital microscopy in mice-the, ‘floating table’,” Minerva Anestesiologica, vol. 79, no. 1, pp. 102–103, 2013. View at Google Scholar
  26. H. Gui, Y. Sun, Z. M. Luo, D. F. Su, S. M. Dai, and X. Liu, “Cannabinoid receptor 2 protects against acute experimental sepsis in mice,” Mediators of Inflammation, vol. 2013, Article ID 741303, 10 pages, 2013. View at Publisher · View at Google Scholar
  27. J. Tschöp, K. R. Kasten, R. Nogueiras et al., “The cannabinoid receptor 2 is critical for the host response to sepsis,” The Journal of Immunology, vol. 183, no. 1, pp. 499–505, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. R. Smith, C. Terminelli, and G. Denhardt, “Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 293, no. 1, pp. 136–150, 2000. View at Google Scholar · View at Scopus
  29. C. Lehmann, M. Kianian, J. Zhou et al., “Cannabinoid receptor 2 activation reduces intestinal leukocyte recruitment and systemic inflammatory mediator release in acute experimental sepsis,” Critical Care, vol. 16, no. 2, article R47, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Storr, C. M. Keenan, H. Zhang, K. D. Patel, A. Makriyannis, and K. A. Sharkey, “Activation of the cannabinoid 2 receptor (CB2) protects against experimental colitis,” Inflammatory Bowel Diseases, vol. 15, no. 11, pp. 1678–1685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Quartilho, H. P. Mata, M. M. Ibrahim et al., “Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors,” Anesthesiology, vol. 99, no. 4, pp. 955–960, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Kianian, N. A. Al-Banna, M. E. Kelly, and C. Lehmann, “Inhibition of endocannabinoid degradation in experimental endotoxemia reduces leukocyte adhesion and improves capillary perfusion in the gut,” Journal of Basic and Clinical Physiology and Pharmacology, vol. 24, no. 1, pp. 27–33, 2013. View at Google Scholar
  33. A. G. Hohmann, R. L. Suplita, N. M. Bolton et al., “An endocannabinoid mechanism for stress-induced analgesia,” Nature, vol. 435, no. 7045, pp. 1108–1112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Holt, F. Comelli, B. Costa, and C. J. Fowler, “Inhibitors of fatty acid amide hydrolase reduce carrageenan-induced hind paw inflammation in pentobarbital-treated mice: comparison with indomethacin and possible involvement of cannabinoid receptors,” British Journal of Pharmacology, vol. 146, no. 3, pp. 467–476, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. A. H. Lichtman, D. Leung, C. C. Shelton et al., “Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity,” Journal of Pharmacology and Experimental Therapeutics, vol. 311, no. 2, pp. 441–448, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. B. F. Cravatt, K. Demarest, M. P. Patricelli et al., “Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 16, pp. 9371–9376, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Alhouayek, D. M. Lambert, N. M. Delzenne, P. D. Cani, and G. G. Muccioli, “Increasing endogenous 2-arachidonoylglycerol levels counteracts colitis and related systemic inflammation,” The FASEB Journal, vol. 25, no. 8, pp. 2711–2721, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. S. M. Saario and J. T. Laitinen, “Therapeutic potential of endocannabinoid-hydrolysing enzyme inhibitors,” Basic & Clinical Pharmacology & Toxicology, vol. 101, no. 5, pp. 287–293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Cao, M. M. Mulvihill, P. Mukhopadhyay et al., “Monoacylglycerol lipase controls endocannabinoid and eicosanoid signaling and hepatic injury in mice,” Gastroenterology, vol. 144, no. 4, pp. 808.e15–817.e15, 2013. View at Publisher · View at Google Scholar
  40. R. G. Pertwee, “GPR55: a new member of the cannabinoid receptor clan?” British Journal of Pharmacology, vol. 152, no. 7, pp. 984–986, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. C. A. Rouzer and L. J. Marnett, “Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways,” Chemical Reviews, vol. 111, no. 10, pp. 5899–5921, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Kianian, M. E. Kelly, J. Zhou et al., “Cannabinoid receptor 1 inhibition improves the intestinal microcirculation,” Clinical Hemorheology and Microcirculation, 2013. View at Publisher · View at Google Scholar
  43. E. Ryberg, N. Larsson, S. Sjögren et al., “The orphan receptor GPR55 is a novel cannabinoid receptor,” British Journal of Pharmacology, vol. 152, no. 7, pp. 1092–1101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Schicho and M. Storr, “A potential role for GPR55 in gastrointestinal functions,” Current Opinion in Pharmacology, vol. 12, no. 6, pp. 653–658, 2012. View at Publisher · View at Google Scholar
  45. B. Csóka, Z. H. Németh, P. Mukhopadhyay et al., “CB2 cannabinoid receptors contribute to bacterial invasion and mortality in polymicrobial sepsis,” PLoS ONE, vol. 4, no. 7, article e6409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Z. Long, W. Li, L. Booker et al., “Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects,” Nature Chemical Biology, vol. 5, no. 1, pp. 37–44, 2009. View at Publisher · View at Google Scholar · View at Scopus